STATIC ANALYSIS OF
FRAMED STRUCTURES

By
BEVERLY C. D. EDWARDS, JR. Bachelor of Science Oklahoma State University
Stillwater, Oklahoma
1966

Submitted to the faculty of the Graduate School of the Oklahoma State University
in partial fulfillment of the requirements
for the degree of
MASTER OF SCIENCE, May, 1967

STATIC ANALYSIS OF
FRAMED STRUCTURES

Report Approved:

PREFACE

The material presented in this report is the outgrowth of three years of work collecting computer programs which are of benefit to the structural engineer. This work was begun in January, 1965, when I first experienced the advantage of using the electronic computer in structural engineering, while enrolled at Oklahoma State University in Civil Engineering $4 B 4$ under Dr. Winfred O. Caxter. I have reviewed hundreds of structural programs in the intervening period, and I have selected some of the best in order to demonstrate what can be done with them. The field of structural programing has opened in the last ten years, and it is rapidly being accepted by professional engineers.

I wish to express my indebtedness and gratitude to the following persons:

To Mr. Jack Frederickson and Mr. David Benham, both of BenhamB1air and Affiliates - Consulting Engineers, Oklahoma City, Oklahoma, for cheir continued, encouragement and help in pursuing my interests in computer work in civil engineering.

To Dr. David MacAlpine for his guidance in my civil engineering education, and his personal confidence in my ability to achieve my goals.

To my father, Mr. Beverly C. D. Edwards, for an unbelievable amount of inspiration.

TABLE OF CONTENTS

Chapter: Page
I. INTRODUCTION 1
II. COMPUTER ANALYSIS OF FRAMES BY MOMENT DIS TRIBUTION 6
Analysis of Single Story Orthogonal Rigid Frames 6
Analysis of Multi-Story Orchogonal Rigid Frames 14
Moment Distribution Factors for Haunched PlateGirders 24
III. COMPUTER ANALYSIS OF ERANES by the method of virtual WORK 29
Vircual Work Analysis of Orthogonal Rigid Erames 29
IV. COMPUTER ANALYSIS OF FRAMES BY THE SLOPE-DEFLEGTION METHOD 4.9
Slope-Deflection Analysis of Orthogonal Rigid Frames 49
V:. COMPUTER ANALYSIS OF FRAMES AND TRUSSES BY THE STIFF- NESS METHOD 63
Plane Truss Analysis by the Stiffness Method 67
Plane Frame Analysis by the Stiffness Method. 79
Space Truss Analysis by the Stiffness Method 88
Space Erame Analysis by the Stiffness Method 99
vI. SEEGTA RURPOSE COMPUTER PROGRAMS 113
Computer Analysis and Design of Mute-Span Highway Bridges 114
Gable Frame Analysis 128
Analysis of Prestressed Concrete Sections 132
Solution of Systems of Simultaneous Equations 1.46
VII. DISCUSSION AND CONCLUSIONS 151
BIBLIOGRAPHY 159
Table Page
I. Input/Output Data for Frame 11
II. Input/Output Data for Sample Multi-Story Frame 20
III. Input/Data for the Data Preparation Program 38
IV. Output of the Data Preparation Program - Input to the General Virtual Worik Progran 39
V. Final Outpul of Virtual Work program 47
VI. Input Data for Pass 1 -Member Data 58
VII. Input Data for Pass 2-Toad Data 59
VIIT. Final Output of Pass 2-End Moments and Reactions 60
IX。 Input Data for Truss 74
X。 Final Output for Truss 76
XI. Input Data Eox Gable Frame 85
XII. Output for Gable Frame 86
XIII Sample Problem Input Data for Schwedler Dome. 93
XIV. Output for Schwedler Dome 95
XV. Input Data for Space Frame 207
XVE. Output Data for Space Frame 108
XVIT. Input Data for Bridge 125
XVIII. Output Data for Bridge 126
XIX. Input/Output Dara for Gable Frame 130
XX. Output Data for Seven Simultaneous Equations 150
XXI. Most Used and/or Most Valuable Programs 154
Figure Page

1. Flow Chart for Moment Distribution of Single-Story Orthogonal Rigid Frame or Continuous Beam 9
2. Continuation of Flow Chart 10
3. Sample Erame by Moment Distribution 13
4. Flow Chart for Moment Distribution of Multi-Story Frames 18
5. Continuation of Flow Chart for Moment Distribution of Multi-Story Frames 19
6. Loads and Final Moments on Frame 22
7. Shears on Frame 23
8. Typical Haunched Beam 25
9. Possible Member Shapes 26
10. Sample Frame by Method of Virtual Woxk 32
11. Redundants in Frame 33
12. Flow Chart for General Virtual Work Program 46
13. Stiffness Matrix for Slope-Deflection 52
14. Flow Chart for Pass 1 of Slope-Deflection Method 54
15. Flow Chart for Pass 2 of Slope-Deflection Method 55
16. Sample Problem by Slope-Deflection Method 56
17. Loading Conditions 57
18. Invert 5 tiffness Matrix S and Store Inverted Matrix in S 66
19. Typical Plane Truss Member 68
Figure Page
20. Flow Chart for Plane Truss by the Stiffness Method 71
21. Truss Flow Chart Continued 72
22. Sample Problem - Truss Arch 73
23. Numbering System for a Plane Frame Member 80
24. Sample Problem - Three Bay Gable Frame 84
25. Sample Problem - Schwedler Dome 91
26. Loading Conditions for Schwedlex Dome 92
27. Typical Space Erame Member 99
28. Member Rotated byocAbout its Own Axis 100
29. Final Displacements of the Member 100
30. Space Frame Member Stifiness Matrix 101
31. Sample Space Frame Problem 106
32. Flow Chart for Bridge Analysis and Design 121
33. Continuation of Bridge Flow Chart 122
34. Two Span Continuous Plate Girder 124
35. Sample Gable Frame Problem 129
36. Possible Variations in Shape of Section 135
37. Dimensions of Section 136
38. Flow Chart for the Analysis of Prestressed Concrete Single "Tr", "I" or Composice Sections 138
39. Continuation of Fl ow Chart 139
40. Continuation of Flow Chart $14: 0$
41. Continuation of Flow Chart 141
Figure Page
42. Noncomposite "I" Section with Tension Allowed 142
43. AASHO-PCI TYPE III BEAM - NO Tension Allowed 145
44. Flow Chaxt of Gauss-Jordan Elimination of Simultaneous
Equations . 149
45. Sample Rroblem for Solution of Simultaneous Equations . 150

CHAPTER I

INTRODUCTION

Like all of the applied sciences, the field of civil engineering is in a constant state of change and improvement. As new methods are developed by the scientist, they are passed on to the engineer for practical application. New products are developed for the axchitect to include his design, and incorporate into the specifications. Methods have been revised and improved in most phases of all branches of the engineering field.

Unlike the rest, structural engineering has not fully enjoyed the prosperity of new development of ideas. The classical methods of structural analysis have remained in use, almost up to the present, for want of any faster, cheaper, safer, or more accurate means of solving for the stresses and strains in highly indeterminate structures. One of the greatest advancements came with the advent of the Hardy Cross method of distributing the moments in continuous beams and rigidly framed structure This brought a great savings in time spent on frame analysis. Moment distribution was easy to apply, and this efficient approach came into com mon acceptance throughout the field of analysis. Other modifications and short cut methods have been discovered, and put into use in recent years. Plastic design of continuous beams and rigid frames is growing in acceptance in design offices, although it still has its stubborn opponents. Many short cut methods such as the cantilever and portal methods of wind
load analysis still leave something to be desired, however.
The cantilever method is not as accurate as the slope deflection method in evaluating the moments and shears in a multiostory rigid fram under wind load, but it is often used because the solution is so much easier to obtain. The quality of the answers obtained with the approxi. mate methods are sometimes questioned. If the answexs obtained through the cantilever method are higher than those of the slope deflection mett this may mean a waste of building materials in the final designo Likem wise, low answers using the approximate solution may lead to a design wi a low factor of safetyo It goes without saying that the most accurate answer is preferred. Exact analysis of highly indeterminate structures is usually more time consuming than approximate analysis, and time is money to the engineer and his client. Because of lack of time or abilit designers continually have been forced to make many simplifying assumptions in their analysis worko No one can say how many structures have been excessively over or under designed because of these simplifying assumptions. Add to this the fact that many outright mistakes in the analysis are never detected, and one sees that structural engineering ha: its problems, like everything else.

The entrance of the electronic computer into the field of structuri engineering will not act as a panacea to cure all of these ills, but it will help considerablyo
"The first successful digital computer was built by a French mathematician, Blaise Pascal, in 1642 。 It was, of course, mechanical in nature; it employed wheels on which were placed the decimal digits 0 through 9 and which were rotated on an axle by means of gears and ratchets. It was the

Forerunter, through much development, of the adding machine. ${ }^{1 I}$

The British began work on the antecedent of the modern stored-program computer in 1812, with the work of Charles Babbage. With his "differenct machine", Babbage was successful in obtaining 6-digit accuracy in the roots of polynomials, but his work was discontinued, for various reasons. In 1944, interest was revitalized at Harvard University, when Dr. Howard Aiken designed the first large-scale general-purpose digital computer, which was built by the International Business Machines Corporation (IBM). From then until the present, the progress and improvenent of the electronic computer has been dramatic. The various stages in the development of the computer in the last two decades are incidental to this discussion but since about 1957 structural engineers have begun to take a serious look at its potential in structural problem solving.

Numerical methods of solving structural problems have been defined in this last decade, and further development and utilization is now in an expotentially increasing growth pattern. The early feelers went out through scholars in the late 1950° s, but since about 1961 commercial interest has seized upon the idea of rapid scructural analysis, principally through the introduction of the IBM 1620 computer on the market. Skepticicm still ranged wide in the field of computer analysis of indeterminate shramers, ft first. Way were, and still are, reluctant to retire from the manual methods of analysis. The same classical methods of slope deflection, moment distribution, virtual work, flexibility and the stiffe ness method are used to solve structural problems on the computer, but ${ }^{1}$ Southworth and Deleeuw, Digital Computation and Numerical Methods, (McGraw-Hill, 1965), p.5.
their solution time is greatly accelerated. Once a numerical method or program is precisely formulated for a structural problem, the speed and accuracy of the computer will far outdistance the manual approach to soIution. This certainly is not without its exceptions, but for most conventional problems in analysis, the computer may be readily applied with success. This does not close the door to the area of design, but this has not been as fully developed as computer programming of structural analysis problems. Design programs are beginning to appear, as will be shown later, but since design is ofien more of a creative art than a science, its procedures axe sometimes harder to define and translate into a logical flow pattern, necessary for a computer program.

This report is a study of the work that has been done in the past ten years (1957-1967) in the area of electronic computation in structural engineering. It would almost be impossible to discuss every program that has been written in this period, since most are intentionally withheld from publication, because of their comercial value. Programing has been done in several general areas of framed structures, and typical programs are presented from each. This report deals with framed structures such as continuous beams, rigid frames, and trusses, in two and three dimensions. No attempt is made to investigate plates and shells. The programs presented were compiled over a period of three years, but they date back to as early as 1960. In addition to programs of a general nature, such as a space frame program for the analysis of any three dimensional rigid frame, some specialized programs have been included. An example of such a special purpose program would be the program presenced for analysis of gabled frames with linearly or parabolically haunched members. The
general purpose programs are the most widely applicable, and usually the most involved and lengthy to write, so they are the most significant to the study. Special purpose programs such as those presented in Chapter VI, do serve theix purpose for special problems which are easily programmed. Those special purpose programs presented are only a small portion of the many possibilities which may arise for programming a particular chain of logieal decisions or calculations involved in a problem which is to be repeated many times.

An outline of each program is presented, along with a discussion of its merits (or lack of such), and a sample problem is worked with each program. The actual print-out of the Fortran source program may be referred to under separate cover. All programs axe written in either Fortran II for the IBM 1620 computer, or Fortran IV for the I.B.M. 7040 computer. The languages are almost identical, and the greatest differences lie in the input/output statements. These programs could easily be converted to use on the computers manufactured by General Electric. It is assumed that the reader has a working knowledge of the IBM Fortran language.

CHAPTER II

COMPUTER ANALYSIS OF FRAMES BY MOMENT DISTRIBUTION

Analysis of Single Story Orthogonal Rigid Frames
The method of moment distribution, or the "Cross-Method", was first developed by Hardy Cross in the period of 1922 to 1924, and presented to his students at the University of Illinois from 1929 to 1932. Since its publication by Cross, it has come into wide acceptance It probably is the most commonly used method of frame analysis.
"Undoubtedly one of the reasons for its great appeal to engineers is the fact that each step in the calculations can be interpreted readily in terms of the physical behavior of the structure being analyzed."

The many merits of moment distribution have made it very popular as a manual method of analyzing indeterminate structures, but let us now concern ourselves with applying it with the aid of the computer.
"The method is suited to digital computer programming, because of the repetitive or cyclical nature of the calculations and the fact that the calculations are well-behaved. This means that the programmer normally does not have to become concerned with questions pertaining to loss of numerical accuracy."1

The calculations can be terminated when any desired degree of accuracy has been obtained through the distribution.

The first step in programing of moment distribution is to input the data pertaining to the geometry of the structure. This first progr

1
James M. Gere, Moment Distribution, (D. Van Nostrand Co., Inc.,) p.vi玉
is designed to distribute the moments in a continuous beam or in a building frame, one stoxy at a time. For one story of a single or mul story orthogonal rigid frame, this includes reading into the computer memory the values of the number of joints, the accuracy tolerance for the distribution, the properties of the beams (length, moment of inert uniform load applied to beam), the number of colums, and the properti of the columns. A single story, having beams and columns tying in from below and/or above, may be made into a continuous beam (no columns) by giving the imaginary colums a moment of inertia of zero. Thus the pro gram can be used for continuous beams or a single story of a multi-bay rigid frome by juggling the input. This will be made clear in the sample problem. Next, the fixed end moments, stiffness factors, carryover factors, and distribution factors for the various joints are calculated.
"The next step in the main program is the distribution of moments. This requires the programing of one complete cycle of calculations (that is, one cycle of moment distribution) which is to-be executed repeatedly until a specific degree of accuracy is obtained. For example, the programer can specify that the cycle is to be repeated until the ratio of the last carry-over moment at a particular joint to the currently calculated value of the moment at that same joint is less than a specified (small) quantity."2

This is illustrated in the flow chaxt of the program.
In this particular program, the end moments are now punched out. An easy addition to the progrem would be computation of end shears on the members.

If nomprismatic members are present, the altered stiffness and carry-over factors may be inserted. 2

James M. Gere, Moment Distribution, (D.Van Nostrand Co., Inc.), p. 24 :

This program is handy for use on a small computer for finding the moments in a multimstory building due to live load, taking the building a story at a time. It also is convenient for use with continuous beams under varying uniform loads, or single story frames without side sway. ${ }^{3}$

It has a few disadvantages, however:

1) Side sway is not considered in the case of
a frame.
2) The only loading condition is for uniform load placed on the beams.
3) A continuous beam is almost as easy to do by long-hand.
4) It only takes a multi-story frame a story at a time.

Its principal advantage is that it requires only a small memory computer such as the IBM 1620, when a larger machine is not available for use of a more comprehensive program. The input data is relatively easy, but the joint and member numbering order should be noted in the sample.

A flow chart of the program appears next, and then a sample problem is worked.

3
This program was originally written for Civil Engineering $4 B 4$, at Oklahoma State University, in April, 1965, under the direction of Dr. W. O. Carter. It was written by the author, in collaboration with Mr. Donald Kerr and Mr. P. T. Chen.

FLOW CHART FOR MOMENT DISTRIBUTION OF SINGLE-STORY OF ORTHOGONAT RIGID FRAME OR CONTINUOUS BEAM

Figure 1.
Flow Chart for Moment Distribution of Single-Story

Orthogonal Rigid Frame or Continuous Beam.

Figure 2.
Continuation of Flow Chart.

TABLE I
INPUT/OUTPUT DATA FOR ERAME

INPUT DATA

0.001		5	4.0
1	15.0	2.0	0.0
4	15.0	2.0	6.0
7	15.0	2.0	0.0
10	15.0	2.0	
10			
2	12.0	1.0	
3	12.0	1.0	
5	12.0	1.0	
6	12.0	1.0	
8	12.0	1.0	
9	12.0	1.0	
11	12.0	1.0	
12	12.0	1.0	
14	12.0	1.0	
15	12.0	1.0	

OUTPUT DATA

1	15.000000	2.000000	4.000000
4	15.000000	2.000000	0.000000
7	15.000000	2.000000	6.000000
10	15.000000	2.000000	0.000000
10			
2	12.000000	1.000000	
3	12.000000	1.000000	
5	12.000000	1.000000	
6	12.000000	1.000000	
8	12.000000	1.000000	
9	12.000000	1.000000	
11	12.00000	1.000000	
12	12.00	1.000000	
14	12.0	1.00	1.000000
15	12.0	1.000000	

JOINT	MEMBER	BENDING MOMENT
1	1	51.857
1	2	-25.925
1	3	-25.925
2	1	13.215
2	2	22.922
2	3	22.922
2	4	-59.063
3	1	87.235
3	2	-29.326
3	3	-29.326
3	4	-28.583
4	1	38.502
4	2	27.071
4	3	27.071
4	4	-92.645
5	1	0.000
5	2	-6.016
5	3	-6.015
5	4	12.031

Frame with Member Numbers, Joint Numbers and Loads

Moments (ft. - K)

Figure 3.

Sample Frame by Moment Distribution

Analysis of Multi-Story Orthogonal Rigid Frames

This program presents moment distribution in its applicatio: to multi-story frames, taking the entire structure at once, rather than one story at a time. The effect of sidesway is considered, and lateral wind load's may be applied. This has a distinct advantage over the prev: moment distribution program, because the entire frame may be considered at once, rather than breaking it into parts. This advantage is not witi out a price, however; a larger computer is required than for the previot program. The last program was run on an IBM 1620 computer, with a 20 K memory, but this program requires more memory capacity. It might be squeezed onto the 1620, if the size of the dimension statements were reduced. This would largely destroy the advantage of the program, because it would be limited to a very small structure. The program might be broken down into several passes to be run on the $1620,20 \mathrm{~K}$, but this has not been tried. It was run on the IBM 7040 , but it would probably run c a 1620 , 40 K , or an IBM 1130 computer. This has not been tried.

The program, almost in its entirity, has been taken from a publication by ping-Chun Wang. ${ }^{1}$ A few minor modifications have been made. The algorithm for distributing the moments is basically the same as the previous moment distribution program, with the addition of allowance for side sway and lateral loads. The shear in each story due to

1${ }^{1}$ Ping-Chun Wang, Numerical and Matrix Methods in Structural Mechanics With Applications to Computers, (John Wiley and Sons, Inco,) po 328.
lateral loads is distributed to the columns in proportion to their shea stiffnesses, and from this basic idea the side sway option is built int the program.

The words of the original author best describe the steps in the pr cedure of the program. ${ }^{2}$
"1) From the geometry and properties of the frame we find the moment distribution factors of all the members meeting at each joint and shear distribution factors of all the columns in each story. When the columns in each story are of the same height, distribution of unbalanced shear in a story can be accomplished directly by distributing the unbalanced total end moments, which cause unbalanced shears, of all the columns in a story in proportion to the moment of inertia of the columns. The summation of a11 the end moments of the columns in a story which cause unbalanced shears may be defined as the unbalanced shear moment in that story.
2) From the loading conditions we compute the fixed end moments of all of the members. The shears in each story are distributed to the columns in that story according to their shear stiffnesses. In turn, the column shears are converted to end moments, $M_{a b}=$ $M_{b a}=-V_{a b} I_{a b} / 2$ for a prismatic column with both ends a and b rigidly connected, or $M_{a b}=-V_{a b} \cdot I_{a b}$ if end b is hinged. Thus the story shears are balanced.
3) Starting from the lowest floor (it is immaterial which floor we use first), we distribute and carry over the unbalanced moments at all joints.
\therefore 4) We compute the unbalanced shear moments induced in adjacent stories after the moment distribution procedure. These moments are represented by the summation of the distributed and carrymover end moments in all the columns of the respective stories.
5) We distribute the unbalanced shear moment in the story below to the ends of the columns in that

2P.C. Wang, Numerical and Matrix Methods in Structural Mechanics With Applications to Computers, (John Wiley and Sons, Inco), po 333.
0.

200
0.
\&
story in proportion to their stiffnesses (moments of inertia in the present case). The unbalanced shear moment in the story above is stored pending the moment distribution of the next higher floor.
6) Thus from floor to floor these procedures are repeated while at each time the unbalanced moments are compared with a predetermined criterion until all the joints and all the stories are balanced in moments and shears to a desired accuracy."

The program is written for an orthogonal frame, with all colums in a given story being of the same length. Members are assumed to be pr: matic, with no missing members at any interior bay or story. If a member is missing, use an imaginary member of zero moment of inertia.

This is an excellent example of how moment distribution can be programmed, in a more useful form than the previous program. Although the running of this program involved little original effort on the part of tr author of this report, a report, by its very nature, is a study of the wc of others, and this program was certainly worth presenting, as a typical example of the work that has been done in moment distribution programming

Since this program requires as large a computer as do the slope deflection and stiffness method programs, it should be compared to them in its efficiency of operation. As will be seen in later chapters, the slope deflection and stiffness method programs are more versatile in allo ing frame member configurations other than strictly orthogonal. All of these methods involve an iterative scheme, and the number of iterations, operations, or running time may vary widely between the methods, dependin on the particular problem involved. Moment distribution involves distrib uting the moments to a given accuracy tolerance, and slope deflection or the stiffness method involves solving simultaneous equations to a prescri
accuracy. Since computer time is relatively low for small frames, the amount of running time is of little concern. For large problems an eco omy study between these methods might be warranted. Because of the advantages of widely varying member arrangements, the slope deflection an stifiness methods are most commonly used.

A flow chart and sample problem are now presented for this program
$\therefore 20$.
$\because \cdots$
$\therefore \because \%$
ごセッナ
シュー

Figure 4.
Flow Chart for Moment Distribution of Multi－Story Frames

Figure 5.
Continuation of Flow Chart for Moment
Distribution of Multi-Story Frames

TABLE II
INPUT/OUTPUT DATA FOR SAMPEE MULTS-STORY FRAME

InPut data

outrut data

PROBLEM NO. 1
COLUMN MOMENTS AND SHEARS
STORY COL. LTNE MOM. AT BOT MOM. AT TOP

				SHEAR
		Ft.-KIPS	Ft.-KIPS	KIPS
3	1	4.270	34.230	3.208
1	2	-63.949	-57.926	-8.490
1	3	-19.213	-23.012	-3.519
2	2	31.843	31.328	5.264
2	2	-39.453	-44.462	-6.993
2	3	-12.195	-15.062	-2.271

beAM Moments and shears
FLOOR SPAN MOM. AT LEET MOM. AT RTGHT SHR. AT LEFT SHR. AT RIGHT

		FT.-KTPS	FT. -KIPS	KTPS	KIPS
2	1	-66.072	146.964	31.955	-40,045
2	2	-49.584	35.208	12.719	-11.281
3	I	-31.327	74.336	15.850	-20.150
3	2	-29.874	15.063	6.741	-5.259

SHEAR (kips)

Figure 7.

This program presents an algorithm for determining the moment distribution factors for linearly (as opposed to parabolically) haunched plate girders. The moment distribution factors for haunched beams of rectangular cross section are available in tabular form in "Handbook of Frame Constants", published by the Portland Cement Association. Graphs are available from various texts.

There are no graphs or tables available for the moment distributior factors of I-beams with haunches. At present, these quantities must be calculated by long hand. An algebraic solution to this problem is presented in Moment Distribution, by James M. Gere, (D. Van Nostrand Company, Inc., l963), pp. 130-133. This algebraic solution has been progranmed by the author to give the stifmess factors, carry-over factors: fixed-end moments with a concentrated load. These factors are computed for both ends of the beam, and with the far end fixed or pinned. The stiffness factors calculated by the program are then multiplied by EI/I, where I, the reference moment of inertia, is the moment of inerti: of the smaller end or non-haunched end of the beam. In the case of a beam haunched on both ends and uniform in the center section, the reserence moment of inertia is that of the center section. E is the moduIus of elasticity of the steel, and L is the length of the nember. Fixed-end moments for both ends of the beam are computed for a uni uniform load, and the value punched out by computex is to be multiplier by w.I. ${ }^{2}$. The fixed-end moment for either end of the beam are computed for a unit concentrated load applied at points $0.1 \mathrm{~L}, 0.3 \mathrm{~L}, 0.5 \mathrm{~L}$, and 0.9 i
from the left end of the span. These values punched out by the computer are to be multiplied by $P \mathrm{~L}$, where P is the value of the concentrated load, and L is the span length.

The input data are the dimensions of the member. Sample dimensions are shown below. All linear dimensions are in inches.

```
            N = Number of Segments to Divide Member into for Analysis
            DA = Total Depth of Left End of Beam
            DC = Total Depth of Beam at Point of Section Change
            DB = Total Depth at Right End of Beam
            ZB = Reference Moment of Inertia at Smallest Depth
            WF1 = Widch of Flange at Left End
            TE1 = Thickness of Elange betmefemend
            TW1 = Thickness of Web at Left End
            WE2 = Width of Flange at Right End
            TE2 = Thickness of Flange at Right End
            TW2 = Thickness of Web at Right End
            AFA = Length of Left Haunch/Total Length
            BTA = Length of Right Haunch/Total Length
```


Figure 8.
Typical Haunched Beam

The algorithm for the solution of this problem is not presented in flow chart form, because it merely consists of a series of piug-in equati, given in the previous reference. An illustration of some of the possible member shapes that can be solved for is shown next.

Figure 9。
Possible Member Shapes

```
90.
L0 %0-4
#asens
& wocmam
SAMPLE PROBLEMS }\mp@subsup{}{}{2
INPUT
\begin{tabular}{rrrrr}
30 & 24.0 & 24.0 & 48.0 & 3620.0 \\
& 12.0 & 1.0 & 0.50 & 0.0 \\
& 12.0 & 1.0 & 0.50 & 0.50
\end{tabular}
```


INPUT

30	46.0	26.91	26.91	3267.0
	10.0	1.0	0.50	0.30
	9.990	.747	.49	0.0

${ }^{2}$ These sample problems are taken from Moment Distribution, by James M. Gere, pp. 131, 134.

oumeut

REFERENCE MOMENT OF INERTTA 3225.158000
$\mathrm{KF}(A B)$
7.377095
$\operatorname{COF}(A B)$
.453750
$K=.1$

$$
\begin{aligned}
& K F(B A) \\
& 4.592840 \\
& \operatorname{COF}(B A) \\
& .728822 \\
& \mathrm{~K}=.3
\end{aligned}
$$

KS (AB)

$$
7.377095
$$

$$
4.937462
$$

LS (BA)

UN.L.EM (AB)
3.073970

$$
\operatorname{COF}(A B)
$$

FM (BA)

$$
K=.1
$$

$0.118684 \quad-.068190$
$\mathrm{K}=.5 \quad \mathrm{~K}=7$
$K=0!$
CONC.L.
IM ($A B$)
.091923 .205868 . 193013 . 10059531

FM (BA)
$-.003583-.037318 \quad-.097327 \quad-.132745 \quad-.08086$

Staffness factors obtained are to be mulirlied by el/a
F.E.M. FOR UNTFORM LOAD IS MULTIRLIED BY W* (L, $\% 2$)
F.E.M. FOR CONGENTRATED LOAD IS MULTLLIED BY P*L

COMPUTER ANALYSIS OF FRAMES BY THE METHOD OF VIRTUAJ WORK
CHAPTER IIT

```
*
00
\
    -i.0.60
(as) :%
```

(\%)

$\because \because . \quad \because$.
"- $\quad \cdots \cdot a$

Virtual Work Analysis of Orthogonal Rigid Frames
In order to give a full resume of the field of structural prograt ming, samples of as meny methods of analysis as possible are shown. : method of virtual work has been programmed. ${ }^{1}$ This method of analysis long been in use for manual structural calculations, but it will be s that it is poorly suited for use on a computer. The difficulty lies preparing the input data for the program. In many cases, it has beer found that a frame could be analyzed quicker by long-hand use of mome distribution than $i t$ took to prepare the data for the virtual work pr gram. The data is extremely cumbersome to prepare, and perhaps this will serve to accentuate the advantages of other methods such as slope-deflection and the stiffness method in computer frame analysis.

The virtual work progam will solve for the end moments and axial forces in an indeterminate frame of up to twenty degrees of indetermi acy and up to ten loading conditions. There is no practical limit tc the number of members in the structure. The program is set up to tak only concentrated loads applied at the joints. Uniform loads can ond be simulated by a series of concentrated loads applied at dumy joint and this simply is not worth the trouble. For practical frame analys
${ }^{1}$ Dravo Corporation, General Virtual Work Analysis of Structures, (I.B.M. Users Group Program Library, Catalog Number 9.2.00.
this narrows down the possible loading conditions to concentrated lateral wind loads only.

The Eirst step in preparing the input data for a plane frame is to cut the structure so that it becomes statically determinate and stable, with redundants applied at the cuts. In a plane rigid frame, there are three redundants at each cut. These are the horizontal and vertical force, and the moment applied to the end of the member cut. For each redundant, a unit force or couple must be applied to the structure in place of the redundant. Expressions are written for the moment at each end of each member and the direct load in place of redundant $X(J)$. Similarly, $Q M 2(I, J)$ is the moment at end two of member I, and $\operatorname{DIR}(I, J)$ is the direct load in member I due to a unit load in place of redundant $X(J)$. Expressions are not written where the moment or direct load concerned is equal to zero. For a large structure, the tabulation of these Fortran expressions for the values of the two end moments (moment on each end of a member) on each member and the axial load on each member of the structure due to each individual redundant and due to each individual joint load applied to the structure becomes a mountain of tedious work. One sign wrong, in any of the many, many expressions involved, completely destroys the value of this input data. An entire Fortran program has to be written each time a new structure is to be solved. This first program, known as the "Data Preparation Program" has to be written for
each new structure. The data preparation program compiles all of the values of the end moments and direct axial loads in the structure caused by the application of the unit values of the redundants and the actual joint loads on the "cut structure". This "Data Preparation Program" prepares the data to be fed to the main virtual work program which does the actual solution of the problem. In the time consumed in writing this data preparation program for each structure, one can usually do the problem long-hand by another method and have more faith in the answer.

A sample structure is now shown, and it is followed by the data preparation program required to prepare the data for the main virtual work program.

SAMPLE PROBLEM ${ }^{1}$

The frame is cut such that it is determinate and stable.

Dummy joints are located at the points of application of any loads that are not applied at joints.

If uniform loads axe to be applied, they must be represented as a series of point loads.

Sample Frame by Method of Virtual Work
I.B.M. Users Group, General Virtual Work Analysis of Scructures, p. 8

```
    Redundant reactions are applied at the cut surfaces to bring the
structure to equilibrium.
```


Expressions are written for the moment at each end of each member ar the direet load in each member for unit loads applied in place of each of the redundants.

Figure 11.
Redundants in Frame


```
QM2 (8,10) = mQL (5)
QM1 (8, 10) = QL (5)
QM2 (7,10) = -QL (5)
QM1 (7,10) = QL (5)
QM2 (1,10) = WQI (5)
DIR (10,10) = 1.0
DIR (9,10) = 1.0
DIR (8,10) = 1.0
DIR (7,10) = 1.0
QW2 (6,13) = QL (6)
QM2 (11,13) = mQL (6)
QM1 (11, 13) m QL (6)
QM2 (10,13) = wQL (6)
QM1 (10,13) = QI (6)
QM2 (9,13) = - QL (6)
QMI (9,13) = QI (6)
QM2 (8,13) = -QL (6)
QM1 (8, 13) - QL (6)
QM2 (7,13) = mQL (6)
QM1 (7,13) = QL (6)
QM2 (1, 13) = QLL (6)
DIR (11, 13) = 1.0
DIR (10,13) = 1.0
DIR (9,13) = 1.0
DIR (8,13)=1.0
DIR (7,13) = 1.0
QM1 (7,2) = QL (7)
QM2 (1,2) = -QL (7)
QM1 (1,2)=QL (7)
DIR (2,2) = &1.0
DIR (1,2) = 1.0
QMI (8,5) = QI (8)
QM2 (7,5) = -QI (8)
QM1 (7,5) = QL (8) + QL (7)
QM2 (1,5) = -QL (8) - QL (7)
QM1 (1,5) = QL (8) % QL (7)
DIR (3,5) = -1.0
DIR (1,5) = 1.0
QM1. (9,8) = QL_(9)
QM2 (8,8)=mQI (9)
QMI (8,8)=4QI (9)*QL (8)
QM2 (7,8) = QLI (9)m QI (8)
QMI (7,8) = QL (9) * QL (8) + QL (7)
QM2 (1,8) = &QL (9) - QL (3) - QL (7)
QM1 (1,8)= QMI (7,8)
DIR (4,8) = -1.0
DIR (1,8) = 1.0
QM1 (10,11) = QL (10)
QM2 (9,11) = - QL (10)
QM1 (9,11) = QL (10) & QL (9)
QM2 (8,11) = OM1 (9,11)
```

```
QM1 (8,11) = QL (10) \div QL (9) * QI (8)
QM2 (7,11) = -QM1 (8,11)
QM1 (7,11) = QL (10) \div QL (9) + QI (8) % QL (7)
QM2 (1,11) = - QMI (7,11)
QM1 (1,11) = QM1 (7,11)
DIR (5,11) = -1.0
DIR (1,11) = -1.0
QM1 (11,14) = QI (11)
QM2 (10,14) = -QL (11)
QM1 (10,14) = QL (11) # QL (10)
QM2 (9,14) = -QM1 (10,14)
QM1 (9,14) = QL (11) + QL (10) % QL (9)
QM2 (8,14) = -QM1 (9,14)
QM1 (8,14) = QL (11) % QI (10) % QL (9) % QL (8)
QM2 (7,14) = -QM1 (8,14)
QM1 (7,14) = QL (11) % QL (10) + QL (9) % QL (8) + QL (7)
QM2 (1,14) = -QM1 (7,14)
QM1. (1, 14) = QM1 (7,14)
DIR (6,14) = -1.0
DIR (1,14) = 1.0
QM1 (2,3) = 1.0
QM2 (2,3) = -1.0
QM2 (7,3) = 1.0
QM1 (7,3) = -1.0
QM2 (1,3) = 1.0
QM1 (1,3) = -1.0
QM1 (3,6) = 1.0
QM2 (3,6) = -1.0
QM2 (8,6) = 1.0
QM1 (8,6) = -1.0
QM2 (7,6) = 1.0
QM1 (7,6) = -1.0
QM2 (1,6) = 1.0
QM1 (1,6) = -1.0
QM1 (4,9) = 1.0
QM2 (4,9) = -1.0
QM2 ( }9,9)=1.
QM1 (9,9) = m1.0
QM2 (8,9) = 1.0
QM1 (8,9) = -1.0
QM2 (7,9) = 1.0
QM1 (7,9) = -1.0
QM2 (1,9) = 1.0
QM1 (1,9) = -1.0
QM1 (5,12) = 1.0
QM2 (5,12) = -1.0
QM2 (10,12) = 1.0
QM1 (10,12) = -1.0
QM2 (9,12) = 1.0
QM1 (9,12) = -1.0
0M2 (8,12) = 1.0
QM1 (8,12) = n1.0
```

```
    QM2 (7,12) = 2.0
QM1 (7,12) = -1.0
QM2 (1, 12) = 1.0
QM1 (1,12) = -1.0
QM1 (6,15) = 1.0
QM2 (6,15) = m1.0
QM2 (11, 15) = 1.0
QM1 (11,15) = -1.0
QM2 (10,15) = 1.0
QM1 (10,15) = -1.0
QM2 (9,15) = 1.0
QMI (9,15) = -1.0
QM2 (8, 15) = I.0
QMI (8,15) = - 1.0
QM2 (7,15) = 1.0
QM1 (7,15) = -1.0
QM2 (1,15) = 1.0 Expressions for the moments ank
QM1 (1,15)=-1.0
direct loads due to the unit
                                    redundants end here.
PUNCH 203,NM,ND,NL
DO 10 1=1,NM
PUNCH 202,QT (I), A (I), QI (I)
DO 10 J=1,NR
10 PUNCH 202,QM1 (I,J), QM2 (I,J), DIR (I,J)
STOP
END
```

TABLE III.
INPUT DATA FOR THE DATA PREPARATION PROGRAM

10000.	15000.	20000.	50000。
12	12 4		
50.0	100.0	10000.	
30.0	75.0	5000.0	
10.0	25.0	2000.0	
10.0	25.0	2000.0	
50.0	90.0	8000.0	
30.0	50.0	3000.0	
20.0	20.0	1500.0	
60.0	60.0	6000.0	-
40.0	60.0	6000.0	
40.0	30.0	2000.0	
40.0	25.0	2000.0	
50.0	40.0	3000.0	

TABLE IV
OUTPUT OF THE DATA PREPARATION PROGRAM INPUT TO THE GENERAL VIRTUAL WORK PROGRAM

$12 \quad 12$	4	
50.000	100.000	10000.000
. 000	-30.000	. 000
20.000	-20.000	1.000
-1.000	1.000	. 000
. 000	-10.000	.000
80.000	-80.000	1.000
-1.000	1.000	. 000
.000	- 10.000	. 000
120.000	-120.000	1.000
-1.000	1.000	.000
. 000	*50.000	.800
160.000	2\% 20.000	1.000
-3.000	$\therefore 1.000$.800
. 000	-30.000	.000
200.000	-200.000	1.000
-1.000	1.000	.000
-500000.0	0.0	0.0
30.000	75.000	5000.000
.000	30.000	. 000
.000	. 000	-1.000
1.000	-1.000	. 000
. 000	.000	. 000
.000	.000	. 000
.000	. 000	. 000
. 000	.000	. 000
. 000	.000	.000
. 000	.000	. 000
.000	.000	.000
.000	.000	.000
.000	.000	.000
.000	. 000	. 000
.000	$\bigcirc 000$. 000
. 000	.000	.000
. 000	. 000	. 000
10.000	25.000	2000.000
.000	.000	. 000
. 000	.000	. 000
. 000	. 000	.000
.000	10.000	.000
. 000	. 000	- 1.000
1.000	-1.000	. 000
. 000	.000	.000
. 000	.000	.000

.000	.000	.000
.000	.000	.000
.000	.000	.000
.000	.000	.000
.000	.000	.000
.000	.000	.000
.000	.000	.000
.000	.000	.000
10.000	25.000	2000.000
.000	.000	.000
.000	.000	.000
.000	.000	.000
.000	.000	.000
.000	.000	.000
.000	.000	.000
.000	.000	.000
.000	.000	-1.000
1.000	-1.000	.000
.000	.000	.000
.000	.000	.000
.000	.000	.000
.000	.000	.000
.000	.000	.000
.000	.000	.000
.000	.000	.000
50.000	90.000	8000.000
.000	.000	.000
.000	.000	.000
.000	.000	.000
.000	.000	.000
.000	.000	.000
.000	.000	.000
.000	.000	.000
.000	.000	.000
.000	.000	.000
.000	50.000	.000
.000	.000	-1.000
1.000	-1.000	.000
.000	.000	.000
.000	.000	.000
.000	.000	.000
.000	.000	.000
30.000	50.000	3000.000
.000	.000	.000
.000	.000	.000
.000	.000	.000
.000	.000	.000
.000	.000	.000
.000	.000	.000
.000	.000	.000
000		

. 000	. 000	. 000
. 000	.000	. 000
. 000	. 000	. 000
. 000	. 000	. 000
.000	. 000	. 000
.000	30.000	. 000
. 000	. 000	91.000
1.000	-1.000	. 000
. 000	. 000	. 000
20.000	20.000	1500.000
30.000	-30.000	1.000
20.000	. 000	. 000
-1.000	1.000	. 000
10.000	-10.000	1.000
80.000	-60.000	. 000
-1.000	1.000	. 000
10.000	-10.000	1.000
120.000	-100.000	. 000
-1.000	1.000	. 000
50.000	-50.000	1.000
160.000	- 1404000	. 000
-1.000	1.000	.000
30.000	-30.000	1.000
200.000	-180.000	. 000
-1.000	1.000	. 000
. 000	. 000	. 000
60.000	60.000	6000.000
. 000	.000	. 000
. 000	. 000	. 000
. 000	. 000	. 000
10.000	-10.000	1.000
60.000	. 000	. 000
-1.000	1.000	. 000
10.000	-10.000	1.000
100.000	-40.000	. 000
-1.000	1.000	. 000
50.000	-50.000	1.000
140.000	-80.000	. 000
-1.000	1.000	. 000
30.000	-30.000	1.000
180.000	-120.000	.000
-1.000	1.000	.000
. 000	. 000	. 000
40.000	60.000	6000.000
.000	.000	. 000
. 000	. 000	. 000
. 000	. 000	. 000
. 000	. 000	.000
. 000	. 000	. 000
. 000	. 000	. 000
10.000	$\ldots 10.000$	1.000

40.000	.000	.000
-1.000	1.000	.000
50.000	-50.000	1.000
80.000	-40.000	.000
-1.000	1.000	.000
30.000	-30.000	1.000
120.000	-80.000	.000
-1.000	1.000	.000
.000	.000	.000
40.000	30.000	2000.000
.000	.000	.000
.000	.000	.000
.000	.000	.000
.000	.000	.000
.000	.000	.000
.000	.000	.000
.000	.000	.000
.000	.000	.000
.000	.000	.000
50.000	-50.000	1.000
40.000	.000	.000
-1.000	1.000	.000
30.000	-30.000	1.000
80.000	-40.000	.000
-1.000	1.000	.000
.000	.000	.000
40.000	25.000	2000.000
.000	.000	.000
.000	.000	.000
.000	.000	000
.000	.000	000
.000	.000	.000
.000	.000	.000
.000	.000	.000
.000	.000	.000
.000	.000	000
.000	.000	.000
.000	.000	.000
.000	.000	000
30.000	-30.000	1.000
40.000	.000	.000
-1.000	1.000	.000
.000	.000	.000
50.000	40.000	3000.000
.000	.000	.000
.000	.000	.000
.000	.000	.000
.000	.000	.000
.000	.000	.000
.000	.000	.000
.000	.000	.000
.000	000	

.000	.000	.000
.000	.000	.000
.000	.000	.000
.000	.000	.000
.000	.000	.000
.000	.000	.000
.000	.000	.000
.000	.000	.000

A description of the general virtual work program follows.

The general virtual work equation is employed in the solution for the unknown redundants.

$$
\begin{equation*}
D=\langle S U L / A E+\Sigma / \mathrm{Mm} \cdot d \mathrm{x} / \mathrm{EI} \tag{1}
\end{equation*}
$$

An equation has been derived which satisfies the general equation for the condition that loads are applied only at the joints. Under this condition the moment curve for any member is a straight line.

Refering to the above sketch, the moments at any point, X, are:

$$
\begin{align*}
& A=X * m 1 / L \\
& C=A \div B=(m 1 * X+m 2 *(L-X)) / L \tag{2}
\end{align*}
$$

In like manner,

$$
\begin{align*}
& E=X * m 1 / L \quad F=(I-X) * m 2 / L \\
& G=E * F=(M 1 * X+M 2(L-X)) / L \tag{3}
\end{align*}
$$

Substituting C and G for m and M in equation (I)
$D=\Sigma S U L / A E+\sum 1 / E I \int_{0}^{L}(m 1 * X+m 2 *(L-X) *(M 1 * X+M 2 *(I-X)) / I) d X$

Integrating between the limits of 0 and I and simplifying,
$D=\Sigma S U L / A E+\Sigma L^{*}(m 1 \div(2 * M 1 \div M 2)+m 2 *(2 * M 2 \div M 1)) / 6 * E I$

The symbols as used in the final Fortran program for equation (5) are:

EQUATION (5)	FORTRAN	Actual meaning
L	QL	Length
I	QI	Moment of Inertia
A	A	Area
D	$D(\mathrm{~K}, \mathrm{~J})$	Deflection
S	DIR(K)	Actual Direct Axial Lead
U	DIR(J)	Imaginary Direct Axial Load
M1	QMI (K)	Actual End Moment at End 1
M2	QM2(K)	Actual End Moment at End 2
m1	QMI (J)	Imaginary End Moment at End 1
M2	QM2(J)	Imaginary End Moment at End 2

In this program the following symbols are used to define the limits of the particular problem.

NM = The number of members in the structure
$\mathrm{ND}=$ The number of degrees indeterminate
$\mathrm{NL}=$ The number of loading conditions
The unit and applied load moments $\mathrm{QM1}(\mathrm{~J}), \mathrm{QM2}(\mathrm{~J}), \mathrm{QM1}(\mathrm{~K})$ 。 and $\mathrm{QM2}(\mathrm{~K})$
respectively, and direct loads $\operatorname{DIR}(J), \operatorname{DIR}(K)$, as computed for the cut
structure, in the data preparation program, are fed to the virtual work
program member by member along with the properties of the member.
A flow chart for the general virtual work program is presented on the next page.

Figure 12.
Flow Chart for General Virtual Work Program

TABLE V
FINAL OUTPUT OF VIRTUAL WORK PROGRAM

MEMBER	LOAD			
NUMBER	NUMBER	END MOM1	END MOM2	DIR LOAD
1	1	-1.705	-. 210	. 009
1	2	4.447	. 559	-. 025
1	3	-. 107	-. 013	0.000
1	4	-227919.700	-29608.560	1188.185
2	1	-. 931	-. 196	-. 006
2	2	2.356	. 478	. 011
2	3	-. 056	-.012	0.000
2	4	-114530.490	-28056.510	-847.476
3	1	-. 554	-. 121	-. 009
3	2	1.053	-. 670	-. 038
3	3	-. 020	. 011	0.000
3	4	-1134.341	7914.061	-232.600
4	1	-2.369	-2.605	-. 058
4	2	4.207	-2.804	-. 023
4	3	-. 086	. 051	. 002
4	4	11145.621	11173.686	109.941
5	1	3.122	-24.428	. 064
5	2	21.506	-31.134	1.075
5	3	-. 519	. 753	-. 003
5	4	-110308.530	-18675.230	-218.049
6	1	0.0000	30.000	0.000
6	2	0.0000	0.000	-1.000
6	3	1.0000	-1.000	0.000
6	4	0.0000	0.000	0.000
7	1	. 210	-. 020	-. 028
7	2	-. 559	. 053	. 080
7	3	. 013	-. 001	-. 001
7	4	29608.560	-5844.870	-4422.672
8	1	. 216	-. 007	. 008
8	2	-. 531	-. 267	-. 013
8	3	. 013	. 003	0.000
8	4	33901.370	-13458.830	330.227
9	1	. 128	-. 373	. 076
9	2	d937	-3.028	-. 052
9	3	-. 015	. 064	. 001
	4	5544.770	-1220.440	-347.744
10	1	2.979	-5.571	. 573
10	2	5.832	-8.865	-. 192
10	3	-. 11.6	. 246	. 004
10	4	-9953.240	18675.240	-2579.675

11	1	30.000	-30.000	1.001
11	2	40.000	0.000	$0.00($
11	3	-1.000	1.000	$0.00 C$
11	4	0.000	0.000	$0.00($
12	1	0.000	0.000	$0.00 C$
12	2	0.000	0.000	$0.00 C$
12	3	0.000	0.000	$0.00 C$
12	4	0.000	0.000	$0.00 C$

COMPUTER ANALYSIS OF FRANES BY THE SLOPE-DEFLECTION METHOD

SlopemDeflection Analysis of Orthogonal Rigid Erames

The I.B.M. Users Group presented one of the first programs available for the analysis of highly indeterminate multi-story rigid frameso 1 This program, or similar versions of it, has been used successfully for several years by engineers in evaluating the moments and shears present in large multi-story frames. If it is used to its fullest advantage, it should replace the cantilever and portal methods of approximate analysis. It should be listed as one of the outstanding advantages of computer analysis over manual methods.

The slope-deflection method has been programmed to determine member end moments and reactions for a statically indeterminate orthogonal plane frame. It may be used to determine the moments and reactions for a number of different loading conditions acting on the same frame.
"The program is written in two passes. Pass I evaluates and inverts a stiffness matrix for the structure. Pass II computes end moments and reactions by multiplication of load vectors for each loading condition by the inverted structure matrix from Pass I. Axial shortening in the members is assumed to have a negligible effect, as is shear deflection. Only bending deflections are consideredi. 1
$I_{\text {Kenneth Marvin Richmond, Structural Frame Analysis Prosram, (IBM }}$ Company, Ltd., 1445 West Georgia Street, Vancouver 5, BoCo)

The original version of the program was written in Fortran II, for use on the IBM 1620, with a 40 K memory. The author of this report has rewritten the program in Fortran IV, to be run on the IBM 7040 computer. This enables the program to be used for frames of higher indeterminacy, With the increased memory capacity of the 7040. At present, the program is set up to take a structure of up to 50 members, and up to 40 unknown translations or rotations of the joints. For a structure with 40 unknown joint displacements, this would mean that a 40×40 stiffness matrix would be inverted. With the large memory of the 7040 , the allowable size of the matrix could probably be increased to a maximum of about 150×150, for this program. Larger matrices can be solved using algerithms other than the one employed in this program, but for most structural problems encountered, the program is adequate in its present form. A problem with a 40×40 stiffness matrix could probably be handled by an IBM 1130 computer.

> "The program reads cards describing each member and evaluates a stiffness matrix for the individual members by computing the coefficients of the four slope-deflection equations and summing up the elements of the individual member matrices. The resulting structure stiffness matrix is inverted to give a flexibility matrix for the structure. For each loading case a load vector is made up representing the unbalanced bending moments at each joint and the unbalanced bending reactions for each lateral floor deflection or unknown vertical deflection. The load vector is premultiplied by the flexibility matrix to give a deflection vector made up of all the unknown rotations and deflections at the jointso Finally, the resulting end moments and reactions for all members are determined from the deflections and initial fixedmend moments and reactions. Input for the load cases is the fixednend moments and
reactions for each loaded member and output is final moments and reactions for all members．A number of loading conditions can be solved for each frame． 2

Members can be vertical or horizontal，but no provision has been made to handle sloping members．Coefficients are computed by the program for prismatic members built in at both ends or pinned at either end．For non－prismatic members，there is a provision to enter the coefficients of the 4 by 4 stiffness matrix for the member on data cards．There are four types of members，the fourth of which is the non－prismatic type The first three types and their stiffness matrices are shown on the next page．It should be noted that the matrices are symmetric for all four types of members．

TYPE 1	TYPE 2	TYPE 3
$4 E T / L \quad 6 E I / L^{2} \quad 2 \mathrm{EI} / \mathrm{L} \quad-6 E I / L^{2}$	$0 \quad 0 \quad 0 \quad 0$	$3 E I / L \quad 3 E I / L^{2} \quad 0 \quad \omega 3 E T / L^{2}$
$6 E I / L^{2} 12 E I / L^{3} \quad 6 E I / L^{2} 12 E I / L^{3}$	$03 E I / L^{3} 3 E I / L^{2} \quad-3 E I / L^{3}$	$3 E I / L^{2} 3 E I / L^{3} \quad 0 \quad-3 E I / L^{3}$
$2 E I / L \quad 6 E I / L^{2} \quad 4 \mathrm{EI} / \mathrm{L} \quad-6 E I / L^{3}$	$03 E I / L^{2} \quad 3 E I / L \quad-3 E I / L^{2}$	$\begin{array}{llll}0 & 0 & 0 & 0\end{array}$
$0.6 E I / L^{2}-12 E I / L^{3}-6 E I / L^{2} 12 E I / L^{2}$	$0-3 E I / L^{3}-3 E I / L^{2}-3 E I / L^{3}$	- $-3 E I / L^{2}-3 E I / L^{3} \quad 0 \quad 3 E T / L^{3}$

Figure 13.
"Each member in the structure must be defined
by a member description card giving its member
number for reference purposes, its stiffness EI,
length, and member type (1-4), along with some
data identifying the unknown end deflections.
If the member is a type 1,2 , or 3 member, the
values of $E I$ and I given are used to compute a
stiffness matrix for the member in accordance
with the table just given. If the member is
type 4 , then the 4 cards immediately following
the member description card must contain the
elements of the stiffness matrix, for the member,
arranged as shown for type 1,2 , or 3 member.
These four cards are included only for type 4
members. The sign convention used is as follows:

1) Rotations and bending moments are
positive in the clockwise direction.
2) Deflections and forces are positive
when acting down or to the right.
When the data is to be prepared, a sketch should
be made of the structure, and a number is assigned
to each member, from 1 to $N M$. It is not necessary
to follow a particular order in assigning numbers
to the members. Then each unknown joint rotation
or deflection must be assigned a number. Again,
all numbers from 1 to $N D F$, the number of degrees
of indeterminacy of the structure, must be used.
Where an entire floor must deflect laterally as
a unit, the same horizontal deflection number
will apply to every joinc at that floor level. ${ }^{3}$
A flow chart for the program is given next.

[^0]

Figure 14.
Flow Chart for Pass 1 of Slope-Deflection Method

Figure 15.
Flow Chart for Pass 2 of Slopempeflection Method

TABLE VI							
INPUT DATA FOR PASS 1 -- MEMBER DATA							
	2820						
1	1	11.58	30.0	1	0	2	0
2	1	11.58	30.0	2	0	3	0
3	1	2.28	15.0	5	8	1	4
4	1	2.28	15.0	6	8	2	4
5	1	2.28	15.0	7	8	3	4
6	1	34.2	30.0	5	0	6	0
7	1	34.2	30.0		0	7	0
8	1	3.60	15.0	9	14	5	8
9	1	3.03	15.0	10	14	6	8
10	1	3.60	15.0	11	14	7	8
11	1	38.8	30.0	9	0	10	0
12	1	34.2	30.0	10	0	11	0
13	1	11.58	30.0	11	0	12	0
14	1	11.58	30.0	12	0	13	0
15	1	4.42	15.0	15	20	9	14
16	1	6.90	15.0	16	20	20	14
17	1	3.60	15.0	17	20	11	14
18	1	2.28	15.0	18	20	12	14
19	1	3.03	15.0	19	20	13	14
20	1	52.1	30.0	15	0	16	0
21	1	47.2	30.0	16	0	17	0
22	1	34.2	30.0	17	0	18	0
23	1	34.2	30.0	18	0	19	0
24.	2	12.40	15.0	0	0	15	20
25	2	19.90	15.0	0	0	16	20
26	2	12.40	15.0	0	0	17	20
27	2	3.95	15.0	0	0	18	20
28	2	3.60	15.0	0	0	19	20

12	1			
1	122.	24.4	-122.	24.4
2	122.	24.4	-122.0	24.4
6	250.0	50.0	-250.0	50.0
7	250.0	50.0	-250.0	50.0
11	250.0	50.0	-250.0	50.0
12	250.0	50.0	-250.0	50.0
13	122.0	24.4	-122.0	24.4
14	122.0	24.4	-122.0	24.4
20	250.0	50.0	-250.0	50.0
21	250.0	50.0	-250.0	50.0
22	250.0	50.0	-250.0	50.0
23	250.0	50.0	-250.0	50.0
4	2			
3	16.66	5.0	-16.66	5.0
8	16.66	5.0	-16.66	5.0
15	16.66	5.0	-16.66	5.0
24	0.0	3.75	-25.0	6.25
4	$\cdots 3$			
5	-16.66	-5.0	16.66	-5.0
10	-16.66	-5.0	16.66	-5.0
19	-16.66	-5.0	16.66	-5.0
28	0.0	-3.75	25.0	-6.75

TABLE VIII

FINAL OUTPUT OF PASS 2 - END MOMENTS AND REACTIONS

MN	BML	RL	BMR	RR	LOADENG
1	42.4	20.42	-161.7	28.38	
2	161.9	28.38	-42.5	20.42	
3	-37.7	-5.34	-42.4	5.34	
4	-0.3	-0.03	-0.1	0.03	
5	38.0	5.37	42.5	-5.37	+
6	83.8	41.63	-335.1	58.37	
7	331.3	58.26	-83.5	41.74	
8	-43.8	-6.00	-46.2	6.00	
9	6.0	0.67	4.1	-0.67	
10	34.4	5.33	45.5	-5.33	
11	98.4	42.94	-310.3	57.06	
12	299.6	54.05	-178.2	45.95	
13	133.9	24.53	-130.0	24.27	
14	142.0	27.33	-54.2	21.47	
15	-49.8	-6.96	-54.6	6.96	
16	4.7	0.63	4.7	-0.63	
17	3.2	0.87	9.9	-0.87	
18	-10.9	-1.53	-12.0	1.53	
19	50.7	6.99	54.2	-6.99	
20	102.9	43.34	- -302.7	56.56	
21	275.0	51.24	-237.8	48.76	
22	230.3	48.05	-288.9	51.95	
23	305.1	57.45	-81.6	42.55	
24	-0.0	-2.54.	-53.0	3.54	
25	-0.0	1.54	23.1	-1.54	
26	-0.0	0.29	4.3	-0.29	
27	-0.0	-0.35	-5.3	0.35	
28	-0.0	2.06	30.9	-2.06	

MN	BML	RI	BMR	RR	LOADING 2
1	1.4	-0.08	-3.9	0.08	
2	-9.9	-0.68	-10.6	0.68	
3	28.1	6.78	-1.4	3.22	
4	14.7	1.90	13.8	-1.90	
5	9.2	1.32	10.6	-1.32	
6	-47.7	-2.51	-27.5	2.51	
7	-27.0	-2.46	-46.7	2.46	
8	52.4	9.80	19.6	0.20	
9	37.9	5.18	39.8	-5.18	
10	37.7	5.01	37.5	-5.01	
11	-72.9	-4.4.0	-59.2	4.40	
12	-47.7	-3.43	-55.2	3.43	
13	-16.6	-0.05	-12.0	0.95	
14	-15.7	-1.33	-24.1	1.33	
15	51.7	9.81	20.5	0.19	
16	61.9	8.72	68.9	-8.72	
17	33.3	4.49	34.1	-4.49	
18	27.9	3.71	27.7	-3.71	
19	24.8	3.26	24.1	-3.26	
20	-149.5	-9.82	-145.1	9.82	
21	-119.0	-7.65	-110.6	7.65	
22	-55.3	-3.06	-36.6	3.06	
23	-40.0	-3.41	-62.2	3.41	
24	-0.0	11.94	97.8	-1.94	
25	-0.0	13.48	202.2	-13.48	
26	-0.0	8.84	132.6	-9.84	
27	-0.0	3.25	48.7	-3.25	
28	-0.0	2.49	37.4	-2.49	

MN	BML	RL	BMR	RR	LOADING 3
1	10.7	0.69	9.9	-0.69	
2	3.9	0.08	-1.4	-0.08	
3	-9.2	-1.33	-10.7	1.33	
4	-14.7	-1.90	-13.8	1.90	
5	-28.0	-6.78	1.4	-3.22	
6	46.3	2.45	27.1	-2.45	
7	27.9	2.53	48.0	-2.53	
8	-36.3	-4.89	-37.0	4.89	
9	-38.6	-5.26	-40.3	5.26	
10	-52.7	-9.85	-20.0	-0.15	
11	72.2	4.31	57.1	-4.31	
12	50.4	3.80	63.7	-3.80	
13	20.6	1.19	15.2	-1.19	
14	11.6	0.83	13.4	-0.83	
15	-33.3	-4.61	-35.9	4.61	
16	-61.4	-8.69	-68.8	8.69	
17	-31.8	-4.22	-31.6	4.22	
18	-27.2	-3.59	-26.7	3.59	
19	-44.8	-8.88	-13.4	-1.12	
20	156.0	10.14	148.2	-10.14	
21	119.0	7.66	110.7	-7.66	
22	55.9	3.11	37.6	-3.11	
23	38.9	3.25	58.5	-3.25	
24	0.0	-8.18	-122.7	8.18	
25	0.0	-13.72	-205.8	13.72	
26	0.0	-8.98	-136.8	8.98	
27	0.0	-3.29	-49.3	3.29	
28	0.0	-6.33	-13.7	-4.17	

CHAPTER V

COMPUTER ANALYSIS OF FRAMES AND TRUSSES BY THE STIFFNESS METHOD

The stiffness method is probably the method of structural analysis which is best suited for use on a computer. The program just presented for the slope-deflection method's use of the stiffness matrix is a program of somewhat Iimited capability. It is excellent for that special type of rigid frame whose memper arrangement is orthogonal, but it lacks the flexibility to be used for frames like the gable, where the member arrangement is not orthogonal. In this chapter the use of the stiffness matrix Will be expanded to operate on members whose axis do not necessarily lie on the X or Y axis. In their mosi general form, plane trusses and plane Grames may have members lying at any angle with respect to the X, Y. coordinates. Jikewise, space trusses and space frames may have members skewed with respect to the X, Y, Z coordinates. As will be seen later, the stiffness matrices can be modified by pre- and post-mutiplication by rotation matrices to account for the orientation of members away from the main coordinate system.

The programing of any method of analysis requires a formalized pattern of logical decisions, and the stiffness method is no exception. A computer program for the analysis of a structure by the stifiness method is conveniently divided into several phases, regardess of whether it is for the analysis of a continuous beam, a gria, a plane truss, a plane frame, a space truss or a space frame. The basic approach is expiained by James Gare
and William Weaver, Jr., in their text, Analysis of Framed Structures.
${ }^{n}(1)$ Assembly of Structure Data. Information pertaining to the structure itself must be assembled and recorded. This information includes the number of members, the number of joints, the number of degrees of freedom, and the elastic properties of the material. The locations of the joints of the structure are specified by means of geometric coordinates. In addition, the section properties of each member in the structure must be given. Finally, the conditions of restraint at the supports of the structure must be identified. In computer programing, all such information is coded in some convenient way.
(2) Generation and Inversion of Stiffness Matrix. The stiffness matrix is an inherent property of the structure and is based upon the structure data only. In computer programmm ing, it is convenient to obtain the joint stiffness matrices. This involves generalizing the joint stiffness matrix from one that is related only to the degrees of freedom in the structure to one that is related to all possible joint displacements, including support dism placements. This generalized stiffness matrix is called the :over-all joint stiffness matrix'.
(3) Assembly of Load Data. All loads acting on the structure must be specified in a manner which is suitable for computer programming. Both joint loads and member loads must be given. The former may be handled directly, but the latter are handled indirectly by supplying as data the fixed-end actions caused by the loads on the members.
(4) Generation of Vectors Associated with Loads.

The fixed-end actions due to loads on members may be converted to "equivalent'joint loads". These equivalent joint loads may then be added to the actual joint loads to produce a problem in which the structure is imagined to be loaded at the joints only.

1
I James M. Gere and William Weaver, Jr., Analysis of Framed Structures, (D. Van Nostrand Company, Inc., 1965)
(5) Calculation of Results. In the final phase of the analysts all of the joint displacements, reactions, and member end-actions are computed. One performs the calculation of member end-actions member by member, instead of considering the structure as a whole. Such calculations requite the use of member stifiness matrices.

It should be noted that there are many possible variations in organizing, the stiffness method for programming. The phases of the analysis listed above constitute an orderly approach which has certain essential features that are advantageous when dealing with large, complicated Erameworks."2

Rour programs utilizing the stiffness method are presented in this chapter. As outlined above, the basic oxganization of the stiffness method approach is the same for any problem. The stiffness coefficients and restraint conditions for a plane truss are different from those of a space frame, but the general approach is the same. Many of the Fortran statements in the plane truss, plane frame, space truss, and space frame programs are incerchangeable. The identically same algerithm has been used to invert the stiffness matrix S in the programs for slope-deflection analysis of plane crusses, plane frames, and space frames. The central figure of all stiffness method problems is the stiffness matrix itself, and its inversion.

A flow chart for the inversion of the stiffness matrix S is presented on the next page.

2
James M. Gere and William Weaver, Jr., Analysis of Premed Structures, (D. Van Nostrand Company, Inc., 1965) pp. 191-192.

Figure 18.
Invert Stiffness Matrix S and Store Inverted Matrix in S.

Plane Truss Analysis by the Stiffness Method

The analysis of a plane truss by the stiffness method follows the pattern previously outlined for any stiffness method solution. Trusses differ from other types of structures in the arrangement of their member stiffness matrix and in their degrees of freedom. All members are considered to be pinned-end, with two degrees of freedom possible in each joint (X and Y translation), unless retrained by a support. The size of the over-all joint stiffness matrix is determined by the number of joints in the structure. If there are ten joints in a truss, the over-all joint stiffness matrix will be 20 by 20 , for the 20 possible degrees of freedom (two/joint). Some of these degrees of freedom or displacements will undoubtedly berremoved by the restraint action of the supports. If two supports remove two possible displacements per support, for a total of four restraints, the final matrix involving the unknown displacements wil1 be 16 by 16 . It is this 16 by 16 part of the over-all joint stiffness matrix which is partitioned off from the over-all matrix and inverted to find the unknown displacements.

If the analysis of a plane truss, as in the case of any other type of framed structure, $i t$ is convenient to generate the joint stiffness matrix S, by assessing the contributions from the member stiffnesses. The individual contributions of the 4 by 4 member stiffness matrices for each member are put in theix proper place in the joint stiffness matrix according to the unknown displacements involved, just as the simultaneous equations for a slope-deflection solution are set up. The member stiffness matrix for each member of the truss is a 4 by 4 matrix, because there are four possibie
displacements for each member of a plane truss. These displacements are the X and Y displacements of each end of the nember. Although it is assumed that the reader is familiar with the manual calculations involved in doing a Exuss solution by long-hand, a study of the arrangement of the matrices is important in understanding the computer solution. The plane truss member stiffness matrix for a member with respect co its own member axes (as opposed to the axes oriented to the structure) is $\quad S_{m}=E A / L \quad\left[\begin{array}{rrrr}1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$ shown here.

Figure 19.
Typical Plane Truss Member

As shown above, member i, with ends j and k, is at an angle with the structure oriented axes X_{S} and Y_{S}. The member has four possible end
displacements $(1,2,3,4)$, along its member oriented axes X_{m} and Y_{m}. Since the joint stiffness matrix S_{j} is based upon axes oriented to the structure, it also becomes necessary to obtain member stifinesses for the structure. In the computer program, the member stiffness matrix for a member is generated, and then it is transformed to the structure oriented axes by a process of rotation of axes. Using an appropriate transformation matrix, the rotation of axes may be executed by matrix multiplications. The subject of the organization and application of the rotation and transformation matrices is far too lengthy for the content of this report. For a full explanation of transformation and rotation matrices, the references (Analysis of Framed Structures) in the bibliography should prove adequate. Direction cosines of the member axis with respect to the structure oriented axis are used in setting up the rotation matrices.

As an initial step in the analysis of a plane truss, all of the joints and members must be numbered. After the numbering is complete, it is necessary to record the two joint numbers that are associated with each member. This association of joint numbers with member numbers is necessary in order to ascertain which elements of the joint stiffness matrix S_{j} and which load vectors receive concributions fron each member. It also is necessary to identify a j and k end of each member, so that the origin of the member oriented axes X_{m} and Y_{m} may be set at the j end. All possible joinc displacements and degrees of freedom must be identified, to set up the joint stiffness matrix, as previously mentioned.

Load vectors must be arranged in matrix form also. First, the loads that are applied directy to the joints are read inco the computer, and

Whon the member end actions from loads applied on the members are read in. Wose two loading conditions are then combined to form a single Ioading condition applied at the joints of the truss.

The final matrix arrangement to be solved by the computer is shown below.

$$
\begin{aligned}
& R_{T} \quad A=S_{m} \quad R_{T} \quad D \\
& A=R_{T}^{-1} \quad S_{m} \quad R_{T} \quad D
\end{aligned}
$$

$a_{T}=$ transformation rotation matrix
$S_{m}=\underset{\text { joint stifiness matrix },}{\text { member oriented }}$ $v_{i}^{1}=$ inverse of R $\therefore=$ joint loading conditions, oriented to structure axes
$D=$ final unknown joint displacements
After the unknown joint displacements have been solved for, the the actual member end actions, and the support reactions, are solved for by plugging the displacements into the over-all joint stiffness matrix. This only represents a very brief outine of a process about which many books are devoted to the explanation. This should only serve as a general fuide for the reader to understand what the program is doing. For a better understanding of the manipulation of these matrices and processes by the computer, refer to the printed copy of the source program.

A general flow chart of the program is presented next.

Eigure 20.
Flow Chart for plane Truss by the Stiffness Method

Figure 21.

Note joint and member numbers

Note that most members of the truss are in compression due to the arching action.

Figure 22.
Sample Problem - Truss Arch

TABIE IX
INPUT DATA FOR TRUSS

25	14	8	4	30000.0
0.0		0.0		
0.0		6.00		
10.0		2.0		
10.0		9.33		
20.0		2.0		
20.0		12.66		
30.0		2.0		
30.0		16.00		
40.0		2.00		
40.0		12.66		
50.0		2.00		
50.0		9.33		
60.0		0.0		
60.0		6.0		
1	2	2.00		
1	3	4.00		
1	4	2.00		
2	4	4.00		
3	4	2.0		
3	5	4.00		
3	6	2.00		
4	6	4.00		
5	6	2.00		
5	7	4.00		
5	8	2.00		
6	8	4,00		
7	8	2.00		
7	9	4.00		
8	9	2.00		
8	10	4.00		
9	10	2.00		
9	11	4.00		
10	11	2.00		
10	12	4.00		
12	12	2.00		
12	13	4.00		
12	13	2,00		
12	34	4.00		
13	14	2.00		
1				
1	1			
2				
1	2			

13		
1	1	
14		
1	1	
5	0	
4		
0.0		-10.0
6		
0.0		-10.0
8		-10.0
0.0		
10		-10.0
0.0		
12		-10.0
0.0		

TABLE X
FINAL OUTPUT FOR TRUSS
\$JOB BEV EDWARDS 2509-40040
ANALYSIS OF RLANE TRUSSES
STRUCTURE DATA.

MEMBER END ACTIONS

MEMBER	AMI	AM2	AM3	AM4
1	0.000	0.000	-0.000	0.000
2	15:654	0.000	-15.654	0.000
3	30.863	0.000	-30.863	0.000
4	2.771	0.000	-2.771.	0.000
5	-3.540	0.000	3.540	0.000
6	9.150	0.000	-0.150	0.000
7	9.063	0.000	-0.063	0.000
8	26.556	0.000	-26.556	0.000
9	5.486	0.000	-5.486	0.000
10	13.068	0.000	-13.068	0.000
11	-6.742	0.000	6.742	0.000
12	33.101	0.000	-33.101.	0.000
13	0.000	0.000	-0.000	0.000
14	13.068	0.000	-13.068	0.000
15	-6.742	0.000	6.742	0.000
16	33.101	0,000	-33.101	0.000
17	5.486	0.000	-5.486	0.000
18	9.150	0.000	- 3.150	0.000
19	9.063	0.000	-9.063	0.000
20	26.556	0.000	-26.556	0.000
21	-3.540	0.000	3.540	0.000
22	15.654	0.000	-15.654	0.000
23	30.863	0.000	-30.863	0.000
24	2.771	0.000	-2.771	0.000
25	0.000	0.000	-0.000	0.000

Plane Frame Analysis by the Stiffness Method

The plane frame computer program, written by the author, is capable of determining the end moments, shears, and thrusts in each member of a two dimensional plane rigid frame of any member arrangement. The term "any member arrangement" means that the program is not restricted to frames of orthogonal member axrangement, but it may handle members which are not parallel to the X and Y structure oriented axes. As in the case of the plane truss, this requires the use of member oriented axes and rotation matrices to transfer the member stifiness matrices from the member oriented axes to the structure oriented axes. The member end actions due to member loads must likewise be transfexred from the member to the structure orienced axes.

The basic operacion of this stiffness method program is almost identical to that of the other stiffness method programs such as the plane truss program just presented. A general flow chart for the plane frame program would be the same as that of the plane truss.

The plane frame program differs from the plane truss in its member stiffness matrix, its rotation matrix, and its possible displacements at each joint. A plane frame has three possible unknown displacements at each joint. They are translation in the X direction, translation in the Y direction, and rotation about the Z axis. Each member of the structure may have up to six unknown displacements, three at each end. At the structure supports some of these displacements will be restrained, of course. A typical member, with its six possible displacements is shown, and its
relation to the structure ortented axes should be noted. Single headed arrows represent translation, and double headed arrows represent rotation.

a knowledge of the derivation of the various stiffness factors present in the member stiffness matrix. The plane frame member stiffness matrix for member axes is shown below.

$$
S_{m}=\left[\begin{array}{cccccc}
E A_{x} / L & 0 & 0 & -E A_{x} / L & 0 & 0 \\
0 & 12 E I_{z} / L^{3} & 6 E I_{z} / I^{2} & 0 & -12 E I_{z} / L^{3} & 6 E I_{z} / L^{2} \\
0 & 6 E I_{z} / I^{2} & 4 E I_{z} / L & 0 & -6 E I_{z} / I^{2} & 2 E I_{z} / L \\
-E A_{x} / L & 0 & 0 & E A_{x} / L & 0 & 0 \\
0 & -12 E I_{z} / I^{3} & -6 E I_{z} / L^{2} & 0 & 12 E I_{z} / L^{3} & -6 E I_{z} / I^{2} \\
0 & 6 E I_{z} / I^{2} & 2 E I_{z} / L & 0 & -6 E I_{z} / I^{2} & 4 E I_{z} / L
\end{array}\right]
$$

Plane Frame Member Stiffness Matrix for Member Axes.
The member stiffness matrix must be transformed to the stiffness matrix for the structure axes. This requires the use of the rotation transformation matrix, R_{T}. As the first step in forming the rotation transformation matrix, the rotation matrix R is expressed in terms of the direction cosines. The 3 by 3 rotation matrix R is shown below.

$$
R=\left[\begin{array}{ccc}
\cos \gamma & \sin \gamma & 0 \\
-\sin \gamma & \cos \gamma & 0 \\
0 & 0 & 1
\end{array}\right]
$$

From the rotation matrix R the rotation transformation matrix R_{T} is made up.

$$
R_{T}=\left[\begin{array}{cc}
R & 0 \\
0 & R
\end{array}\right]
$$

Once the transformation rotation matrix R_{T} is available, then the member stiffness matrix for the structure oriented axes may be found.

$$
S_{M D}=\mathbb{R}_{T}^{\prime} \cdot S_{m} \cdot R_{T}
$$

Due to lack of space, the 6 by 6 member stiffness matrix for the structure oriented axes, $S_{M D}$ is not illustrated in full, but it should be clearly defined by the matrix multiplication show, The member stiffness matric for each member is made up in this maner and transferred to the over-all joint stiffness matrix S_{J}, as was done with the plane truss.

The over-all joint stiffness matrix will be $3 * N J$ by 3 rinj, where $N J$ is the number of joints in the structure. The number of degrees of freedom \mathbb{N}, is $\mathbb{N}=3 \times N \mathcal{N}-\mathbb{N}$, where $\mathbb{N R}$ is the number of joint restraint conditions. The joint stiffness matrix S to be inverted is of the order N by N. The over-all joint stiffness matrix is then used to find the member end actions and support reactions.

The imput data for this program is very easy to prepare - far easier than the virtual work program, by comparison. The input data consists of the number of members, number of joints, number of restrained joints, number of restraints, modulus of elasticity of the material, the X, Y. coordinates of the joints, the properties of the members, the joint number on each end of a momber, the joint rastraints, and the loads applied to che structure. The input data for the sample problem took about 45 minutes to prepare and punch.

The program is currently set up for the IBM 7040 computer, but it can be broken down into several passes to run on smaller coapucers. It has been run on the IRm 1620 computer, ate the lack of adequate storage on this computer cripples the program for anything but small structures, with
few degrees of freedom. Versions of this program have recently appeared in the IBM 1130 User's Group, and it is very popular with practicing engineers. The sample problem should fully illustrate its merits.

BENDING MOMENTS (in-kips)

Figure 24.
Sample Problem - Three Bay Gable Erane

TABLE XI
INPUT DATA FOR GABLE FRAME

10		8	429000.0			
0.0		0.0				
0.0		180.0				
300.0		300.0				
600.0		180.0				
600.0		0.0				
900.0		300.0				
1200.0		180.0				
1200.0		0.0				
1500.0		300.0				
1800.0		180.0				
1800.0		0.0				
1	2	20.0	2000.0			
2	3	20.0	2000.0			
3	4	20.0	2000.0			
5	4	20.0	2000.0			
4	6	20.0	2000.0			
6	7	20.0	2000.0			
8	7	20.0	2000.0			
7	9	20.0	2000.0			
9	10	20.0	2000.0	\cdots		
11	10	20.0	2000.0			
1						
1	1	0	.			
5						
1	1	0				
8						
1	1	0				
11						
I	1	0				
1	3					
2						
10.0		0.0	0.0			
2						
4.63		11.60	3750.0	4.63	11.60	-3750.0
5						
4.63		11.60	3750.0	4.63	11.60	-3750.0
8						
4.63		11.60	3750.0	4.63	11.60	-3750.0

TABLE XII
OUTPUT FOR GABLE FRAME
\＄JOB
BEV EDWARDS
$2509=40040$
ANALYSIS OF PLANE FRAMES BY THE STIFFNESS METHOD STRUCTURE DATA

M	N	$N J$	$N R$	NRJ	E
10	25	11	8	3	29000.000

COORDINATES OF JOINTS

JOINT	X	Y				
1	0.000	0.000				
2	0.000	180.000				
3	300.000	300.000				
4	600.000	180.000				
5	600.000	0.000				
6	900.000	300.000				
7	1200．000	180.000				
8	1200.000	0.000				
9	1500.000	300.000				
10	1800.000	180.000				
11	1800.000	0.000				
MEMBER	SIGNATION	AND PROPE	IES			
	J JK	AREA	MOM INERTIA	IENGTH	cx	CY
1	12	20.000	2000.000	180.000	0.000	1.000
2	2 －	20.000	2000．000	323．110	0.928	0.371
3	34	20.000	2000.000	323.110	0.928	－0．371
4	5.4	20.000	2000.000	180.000	0.000	1.000
5	46	20.000	2000．000	323.110	0.928	0.371
6	67	20.000	2000.000	323.110	0.928	－0．371
7	87	20.000	2000.000	180.000	0.000	1.000
8	79	20.000	2000.000	323.110	0.928	0.371
9	910	20.000	2000．000	323.110	0.928	－0．371
10	1110	20.000	2000．000	180.000	0.000	1.000

JOINT RESTRAINTS

JOINT	X RSTRT。	Y RSTRT。	Z RSTRT。
1	1	1	0
5	1	1	0
8	1	1	0
11	1	1	0

```
LOAD DATA
    NLJ NLM
        2. }
```

ACTIONS APPLIED AT JOTNTS
$\begin{array}{rrrr}\text { JOINT } \\ 2 & \mathrm{X} & \text { ACTION } \\ 10.000 & Y \text { ACTION } \\ 0.000\end{array}, \quad \begin{array}{r}\text { Z ACTION } \\ 0.000\end{array}$
ACTIONS AT ENDS OF RESTRAINED MEMBERS DUE TO LOADS

MEMBER	AML1	AML2	AML3	AML 4	AML5	AML 6
2	4.63	11.60	3750.00	4.63	11.60-3	50.00
MEMBER	AMLI	AMJ2	AML3	AML 4	AML5	AML6
5	4.63	11.60	3750.00	4.63	11.60-3	50.00
MEMBER	AML1	AML2	AML3	AMLS	AML5	AML6
8	4.63	11.60	3750.00	4.63	11.60-3	50.00
JOINT DISPLACEMENTS AND SUPPORT REACTIONS						
JOINT	X DISPL	Y DISPL	Z DISPL	X REAC	Y REAC	Z REAC
1	0.00	0.00	-0.01	6.23	16.76	0.00
2	1.06	-0.01	-0.01	0.00	0.00	0.00
3	1.09	-0.10	0.01	0.00	0.00	0.00
4	1.11	m0.01	-0.01	0.00	0.00	0.00
5	0.00	0.00	-0.01	-3.02	26.02	0.00
6	1.12	m0.03	0.01	0.00	0.00	0.00
7	1.12	-0.01	-0.01	0.00	0.00	0.00
8	0.00	0.00	-0.01	-1.84	25.79	0.00
9	1.17	-0.16	0.01	0.00	6.23	16.76
10	1.23	-0.0	-0.00	-3.02	26.02	-1.84
11	0.00	0.0	mo.01	-11.43	6.36	6.36

NEMBER END ACTIONS

END AGTIONS ON J END

MEMBER	THRUST	SHEAR	MOMENT	THRUST	SHEAR MOMENT
1	16.76	m6.23	± 0.00	-16.76	$6.23-1120.82$
2	21.29	9.54	1120.82	-12.03	13.66-1786.95
3	18.13	-1.59	1786.95.	m18.13	1.59-2302.27
4	26.02	3.02	0.00	-26.02	-3.02 54.3.28
5	18.89	11.62	1758.99	m9.63	11.58-1753.74
6	14.96	-1.75	1753.74	-14.96	1.75-2317.61
7	25.79	1.84	m0.00	-25.79	m1.84 330.52
8	17.51	13.05	1987.08	-8.25	10.15-1519.38
9	11.97	-1.66	1519.38	-12.97	1.66-2057.04
10	6.36	11.43	$\times 0.00$	-6.36	-11.43 2057.04

Space Truss Analysis by the Stiffness Method

The space truss, or three dimensional truss, has members which are skewed with respect to the X, Y, Z axes of the structure. With pinned joints at both ends of a membex, there are six possible unknown displacements for each member. Each joint may translate in the \bar{X}, Y, or Z direction, with no rotation of restraint considered to be present. A space truss with J joints will have $3 * J$ possible degrees of freedom, less the support restraints.

The basic flow charts for the plane truss, the plane frame, and the space frame programs are presented in Analysis of Framed Structures, by J.M. Gere and W. Weaver, Jt. The original author of the space truss program is unknown. All that was available to the author of this report was a workIng version of the program, with no commentary available. Gere and Weaver present flow charts for a space truss program, which is quite similar to the program presented here. This program has a slight advantage over that of Gere and Weaver, in that it contains a routine for maximizing the forces present in the members for a combination of different loading conditions. In other woras, if several different types of loading conditions are applied separately to the same structure, the program will select the Ioading combination for each member that will cause the maximum tension or comptession in the member. This maximum value is punched out. This is an especially handy feature for a designer to use in determining the worst loading conditions for a structure.

The stiffness method approach to a space frame problem is basically the same as that for the plane frame. The member stiffness matrix is of the
order 6 by 6 , since there are six possible unknown displacements for each member. The rotation matrix is slightly different also. The space truss member stiffness matrix for the member oriented axes is shown below. ${ }^{1}$

$$
\mathrm{S}_{\mathrm{m}}=\mathrm{EA/L} \cdot\left[\begin{array}{rrrrrr}
1 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The direction cosines, for use in the rotation matrix, are generated from the coordinates of the j and k ends of the member, in the structure oriented axes system.

$$
\begin{aligned}
& C_{x}=\left(x_{k}-x_{j}\right) / L \\
& C_{y}=\left(y_{k}-y_{j}\right) / L \\
& C_{z}=\left(z_{k}-z_{j}\right) / L \\
& L=\sqrt{\left(x_{k}-x_{j}\right)^{2}+\left(y_{k}-y_{j}\right)^{2}+\left(z_{k}-z_{j}\right)^{2}}
\end{aligned}
$$

After the rotation matrices are generated and combined to form the rotation transformation matrix, they are applied to the member stiffness matrix in the member axes system to form the member stiffness matrix in the structure oriented axes system, for the space truss. The basic space truss member stiffness matrix for the structure axes system is shown on the following page.

IJ. M. Gere and W. Weaver, Jr., Analysis of Framed Structures, P. 280, $_{\text {J. }}$, Figure 4-39。

$$
S_{M D}=E A_{x} / L \cdot\left[\begin{array}{cccccc}
C_{x}^{2} & C_{y} C_{x} & C_{z} C_{x} & -C_{x}^{x} & -C_{y} C_{x} & -C_{z} C_{x} \\
C_{x} C_{y} & C_{y}^{2} & C_{z} C_{y} & -C_{x} C_{y} & -C_{y}^{2} & -C_{z} C_{y} \\
C_{x} C_{z} & C_{y} C_{z} & C_{z}^{2} & -C_{x} C_{z} & -C_{y} C_{z} & -C_{z}^{2} \\
-C_{x}^{2} & -C_{y} C_{x} & -C_{z} C_{x} & C_{x}^{2} & C_{y} C_{x} & C_{z} C_{x} \\
-C_{x} C_{y} & -C_{y}^{2} & -C_{z} C_{y} & C_{x} C_{y} & C_{y}^{2} & C_{z} C_{y} \\
-C_{x} C_{z} & -C_{y} C_{z} & C_{z}^{2} & C_{x} C_{z} & C_{y} C_{z} & C_{z}^{2}
\end{array}\right]
$$

As in the other stiffness method programs, the member stiffness matrices are combined to form the over-all joint stiffness matric, which is inverted. Loading conditions are read in and the unknown joint displacements are solved for. The final member forces are solved for, and the results are punched out.

A sample problem was run for a Schwedler dome, with wind and gravity load applied separately. The input data for the program is simple to prepare. The number of members, number of joints, number of joints restrained, and number of loading conditions are read in first. Next, the joint coordinates and numbers of the joints on each end of a member are read in. After the stiffness matrix has been inverted, the loads applied to each joint are read in. This input data is all clearly explained in the comment statements in the source program. The program is well suited for the analysis of domes, transmission towers, and other such space crusses.

Sample Problen - Schwedier Dome

Gravity and wind loads are applied to joints 1 m 12 of the structure.

Figure 26.

TABLE XIII

SAMPLE PROBLEM INPUT DATA FOR SCHWEDIER DOME

SCHWEDLER DOME ANALYSIS FOR GRAVITY AND WIND IOAD

18064202		
20.0	26.0	20.0
25.0	35.0	20.0
35.0	35.0	20.0
40.0	26.0	20.0
35.0	17.0	20.0
25.0	17.0	20.0
10.0	26.0	10.0
20.0	43.0	10.0
40.0	43.0	10.0
50.0	26.0	10.0
40.0	9.0	10.0
20.0	9.0	10.0
0.0	26.0	0.0
15.0	52.0	0.0
45.0	52.0	0.0
60.0	26.0	0.0
45.0	0.0	0.0
15.0	0.0	0.0
1.0	0102	
1.0	0203	
1.0	0304	
1.0	0405	
1.0	0506	
1.0	0601	
1.0	0708	
1.0	0809	
1.0	0910	
1.0	1011	
1.0	1112	
1.0	1207	
1.0	1314	
1.0	1415	
1.0	1516	
1.0	1617	
1.0	1718	
1.0	1813	
1.0	0208	
1.0	0309	

1.0	0410	
1.0	0511	
1.0	0612	
1.0	0107	
1.0	0713	
1.0	0814	
1.0	0915	
1.0	1016	
1.0	1117	
1.0	1218	
1.0	0108	
1.0	0209	
1.0	0310	
1.0	04.11	
1.0	0512	
1.0	0607	
1.0	0714	
1.0	0815	.
1.0	0916	
1.0	1117	
1.0	1118	
1.0	1213	
0.0	0.0	-5.0
0.0	0.0	-5.0
0.0	0.0	-5.0
0.0	0.0	-5.0
0.0	0.0	-5.0
0.0	0.0	-5.0
0.0	0.0	-10.0
0.0	0.0	-10.0
0.0	0.0	-10.0
0.0	0.0	10.0
0.0	0.0	-10.0
0.0	0.0	-10.0
2.0	0.0	0.0
2.0	0.0	0.0
2.0	0.0	0.0
2.0	0.0	0.0
2.0	0.0	0.0
2.0	0.0	0.0
4.0	0.0	0.0
4.0	0.0	0.0
4.0	0.0	0.0
4.0	0.0	0.0
4.0	0.0	0.0
4.0	0.0	0.0
10		

	TABIE XIV	
$\$$ OUTPUT FOR SCHWEDIER DOME		
1	$\because \quad$ BEV EDWARDS	$2509-40040$

SCHWEDLER DOME ANALYSIS FOR GRAVITY AND WIND LOAD

ANALYSIS FOR LOADING CONDITION NUMBER 1

DISPLACEMENTS			
JOINT	X-DISPL	Y-DISPL	Z-DISPL
1	0.039	-0.123	-0.259
2	-0.123	-0.259	-0.105
3	-0.259	-0.105	-0.064
2	-0.105	-0.064	-0.245
	-0.064	-0.245	-0.124
5	-0.245	-0.124	0.052
6	-0.124	0.052	-0.255
7	0.052	-0.255	-0.039
8	-0.255	-0.039	0.123
9	-0.039	0.123	-0.259
10	0.123	-0.259	0.105
11	-0.259	0.105	0.064

MEMBER	
$1-2$	STRESS
$2-3$	-4.58
$3-4$	-4.71
$4-5$	-5.13
$5-6$	-4.58
$6-1$	-4.71
$7-8$	-5.13
$8-9$	-10.76
$9-10$	-10.59
$10-11$	-10.14
$11-12$	-10.76
$12-7$	-10.59
$13-14$	-10.14
$14-15$	-0.00
$15-16$	-0.00
$16-17$	-0.00
$17-18$	0.00
$18-13$	0.00

$2-8$	-6.86
$3-9$	-7.27
$4-10$	-6.67
$5-11$	-6.85
$5-12$	-7.27
$1 \because-7$	-6.67
$7-13$	-20.83
$8-14$	-21.92
$9-15$	-21.52
$10-16$	-20.83
$11-17$	-21.92
$12-18$	-21.52
$1-8$	-0.56
$2-9$	-0.02
$3-10$	0.58
4	-11

ANALYSIS FOR LOADING CONDITION NUMBER 2

DISPLACEMENTS			
JOINT	X-DISPL	Y-DISPL	Z-DISPL
1	0.160	-0.029	-0.106
2	-0.029	-0.106	0.143
3	-0.106	0.143	-0.020
4	0.143	-0.020	-0.015
5	-0.020	-0.015	0.151
6	-0.015	0.151	-0.025
7	0.151	-0.025	0.078
8	-0.025	0.078	0.160
9	0.078	0.160	-0.029
10	0.160	-0.029	0.106
11	-0.029	0.106	0.143
12	0.106	0.143	-0.020
MEMBER	Stress		
$1-2$	0.00		
2-3	1.94		
3-4	2.00		
$4-5$	0.00		
$5-6$	-1.94		
6-1	-2.00		

$7-8$	1.18	
$8-9$	5.97	
$9-10$	5.04	
$10-11$	-1.18	
$11-12$	-5.97	
$12-7$	-5.04	
$13-14$	-0.00	
$14-15$	-0.00	
$15-16$	-0.00	
$16-17$	0.00	
$17-18$	0.00	
18	-13	0.00
2	-8	2.71
3	-19	1.41
4	-10	-1.45
5	-11	-2.71
6	-12	-1.41
1	-7	1.45
7	-13	5.32
8	-14	6.08
9	-15	1.10
$10-16$	-5.32	
11	-17	-6.08
12	-18	-1.10
1	-8	-2.03
2	-0	-3.89
3	-10	-2.07
4	-11	2.03
5	-12	$\ddots 3.89$
6	-14	2.07
7	-14	-4.83
8	-15	-0.35
9	-16	-4.79
10	-17	4.83
11	-18	9.35
12	-13	4.79

MAXIMUM STRESSES UNDER ANY COMBINATION OF ABOVE

MEMBER		MAX. TENSION	MAX。COMPRESSION
$1-2$	0.00000	-4.57584	
$2-3$	1.94286	$\mathbf{- 4 . 7 0 6 3 5}$	
$3-4$	2.00029	-5.13147	
$4-5$	0.00000	-4.57583	
$5-6$	0.00000	-6.64921	
$6-1$	0.00000	-7.13176	
$7-8$	1.18339	-10.75562	
$8-9$	5.96616	-10.58367	
$9-10$	5.03828	-10.14283	

10	- 11	0.00000	-11.93900
11	- 12	0.00000	-16.55484
12	- 7	0.00000	-15.18110
13	- 14	0.00000	0.00000
14	- 15	0.00000	0.00000
15	-16	0.00000	0.00000
16	- 17	0.00000	0.00000
17	- 18	0.00000	0.00000
18	- 13	0.00000	0.00000
2	- 8	2.71027	-6.86295
3	- 9	1.41405	-7.26665
4	- 10	0.00000	-8.12162
5	- 11	0.00000	-9.57322
6	- 12	0.00000	-8.68071
1	- 7	1.454.62	-6.66700
7	- 13	5.32262	-20.83224
8	- 14	6.08029	-21.92415
9	- 15	1.09606	-21.51612
10	- 16	0.00000	-26.15486
11	- 17	0.00000	-28.0044
12	- 18	0.00000	-22.61218
1	- 8	0.00000	-2.59218
2	- 9	0.00000	-3.90392
3	- 10	. 0.57570	-2.07251
4	- 11	2-02865	-0.56352
5	- 12	3.88827	-0.01565
6	- 7	2.64821	0.00000
7	- 14	0.85486	-4.82978
8	- 15	0.00000	- 0.35734
9	- 16	0.00000	-5.64361
10	- 17	5.68464	0.00000
11	- 18	9.35024	-0.00709
12	- 13	4.79346	-0.85015

Space Frame Analysis by the Stiffness Method

The space frame is usually the most complicated of all types of framed structures. A member in a space frame may have its member axes skewed with respect to the structure axes, as in the case of the space truss. The space frame is a rigidly framed three dimensional structure, which may have translation and rotation about the $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ axes. This means that each joint may have three translational and three rotational unknown displacementso Since a typical member i frames into a joint on each end (member has j and k end) it will have a total of twelve unknown displacements, six from each end. The sketch below illustrates the twelve unknown displacements. ${ }^{1}$ A single headed arrow represents a translation, and a double headed arrow represents a rotation. These displacements are shown in the structure oriented axes system.

The member also may be rotated about its own X_{m} axis, by an angle . A sketch of the rotation of a space frame member about its X_{m} axis is shown below. ${ }^{2}$

Member Rotated by \propto About Its Own Axis
The final displacements of the member, in its own member oriented axes, after the member has been rotated the angle (optional), are shown in Figure 290^{2}

${ }^{2}$ Nostrand Company, Inc.,) po 291 , Figure $4-46$

Figure 30.
Space Frame Member Stiffness Matrix

The basic member stiffness matrix for the member oriented axes is shown in figure 30 . This is a 12 by 12 stiffness macrix, because of the 12 possible displacements per member. The transformation rotation matrix must be appied to the member stiffness matrix to transfer it to the structure oriented axes system, so that it can be placed in the over-all joint stiffness matrix.

The transformation rotation matrix is composed of several rotation matrices, as in the other stiffness method programs. The derivation of the rotation matrix is presented in several of the reference texts. The rotation matrix is illustrated below. The direction cosines C_{x}, C_{y}, C_{z} were derived in the previousediscussion of the space truss rotation matrix. The rotation matrix for the space frame is as follows:

The transformation rotation marrix is generated from the rotation matriz as follows:

$$
\mathbb{R}_{\mathbb{T}}^{\prime \prime}=\left[\begin{array}{llll}
\mathbb{R} & 0 & 0 & 0 \\
0 & \mathbb{R} & 0 & 0 \\
0 & 0 & \mathbb{R} & 0 \\
0 & 0 & 0 & \mathbb{R}
\end{array}\right]
$$

The member stiffness matrix for the structure oriented axes is computed by the usual matrix multiplications:

$$
S_{M D}=R_{I}^{\prime} \cdot S_{M} \cdot T_{T}
$$

The flow chart for the basic operation of the space frame program is the same as the other stiffness method programs. The over-all joint stiffness matrix is composed of the contributions from various member stiffness matrices, placed according to the degrees of freedom involved. The matrix is inverted, the loads are read in, the joint displacements are solved for, and the final member end actions are determined.

The space frame approach to the analysis of a rigidly framed structure is the most rigorous method available. No longer is it necessary to make the simplifying assumption of cutting a rigid frame into plane frame sections for the analysiso The total structure, in the case of a multi-story office building, for example, can be placed in the computer all at once, in three dimensions. This will give the best possible values of the member forces, for the assumed loading conditions. The space frame program includes the effect of axial force, shear, torsion, and triaxial bending moment in each member. Shear and torsion may not seem to be significant, but the effect of axial force may be interestingo An excellent example of the effect of axial force in the columns of a 20 -story building has been investigated by some researchers. ${ }^{3}$ A 20-story building was investigated with space frame analysis, by computer. A few of their conclusions are quoted here.

3 William Weaver, Jro, and Mark Nelson, Three-Dimensional Analysis of Tier Buildings, (Vol. 92, NO. ST 6. A.S.C.E. Structural Division), Dec.s 1966.

> Tier buildings can be analyzed as space structures using the three-dimensional approach . . This type of analysis becomes mandatory whenever the structure is not symmetricalo A digital computer is necessary to implement the solution.
> Analyses of a 20 mtory building indicate that neg. lecting axial strains in colums causes rigid body displacements to be too small (20% in the example.) Much more dramatic errors than this occur in the joint rotations and the member end actions in the upper part of the building, showing that the results are grossly erroneous when column strains are omitted. The omission of torsional rigidities in the same example resules in displacements that are only slightly in error.

Thus, errors in excess of 20% were found for the member end moments in the problem studied by the researchers. This fact alone should demonstrate the merit of space frame analysis by computers.

Space frame analysis by computer is not without its difficulties, however. Since each unrestrained joint has six possible unknown dism placements, the size of the joint stiffness matrix rapidly expands to the memory limit of most computers. Space frame analysis is not practical on anything but a large computer. To limit the number of posw sible displacements in a structure, torsion and shear may be ignored by coding this fact into the input data for the joint restraints. This will allow more joints to be considered (with less than six degrees of freedom), for the same maximum size of matrix allowed for a given computer. As the program is currently set up for the I.BoM. 7040, a maxm imum size matrix of about 175 by 175 could be handled. For a larger matrix, a more sophisticated method of handling the matrix is necessary. Since such a large matrix would exceed the allowable memory if placed in core all at once, parts must be temporarily stored on tape during the solution。 Algorithms have been developed for this purpose, but they
are beyond the scope of this report.

The I.B.M. 1130 Users Group and the 7090 Users Group offer a canned" space frame program called STRESS", which has been used quite successfully by siructural engineers for several years. The program "STRESS" was originally developed at Massachusetts Institute of Technologyo Another commercial program, "FRAME", will size the wide-flange members for a space frame, after a preliminary analysis has been preformed with some trial member sizes.

A very simple sample problem has been run to illustrate the results of the program. The final output of the member end actions are in kips and inchokips.

Figure 31。
Sample Space Frame Problem

TABIE XV

INPUT DATA FOR SPACE FRAME

8	8	24	4	29000.0		12000.0		
0.0		0.0		0.0				
360.0		0.0		0.0				
0.0		0.0		-240.0				
360.0		0.0		-240.0				
0.0		14.4.0		0.0				
360.0		144.0		0,0				
0.0		144.0		-240.0				
360.0		144.0		- 260.0				
1	5	10.0		30.0		40.0	60.0	0.0
2	6	10.0		30.0		40.0	60.0	0.0
3	7	10.0		30.0		40.0	60.0	0.0
4	8	10.0		30.0		40.0	60.0	0.0
5	6	10.0		30.0		40.0	60.0	0.0
6	8	10.0		30.0		40.0	60.0	0.0
8	7	10.0		30.0		40.0	60.0	0.0
7	5	10.0		30.0		40.0	60.0	0.0
1								
1	1	1	1	1	$\therefore 1$			
2								
1	1	1	1	1	1			
3								
1	1	1	1	1	1			
4								
1	1	1	1	1	1			
2	2							
5								
5.0		0.0		0.0		0.0	0.0	0.0
7								
15.0		0.0		0.0		0.0	0.0	0.0
5								
0.0		30.0		0.0		0.0	0.0	1800.0
0.0		30.0		0.0		0.0	0.0	-1800.0
7								
0.0		15.0		0.0		0.0	0.0	900.0
0.0		15.0		0.0		0.0	0.0	-900.0

TABLE XVI
OUTPUT DATA FOR SPACE FRAME

\$JOB				BEV EDWARDS			2509-40040
ANALYS	F	FR					
StRUCTURE DATA							
M	N	NJ	NR	NRJ	E	G	
8	24	8	24	4	29000.000	12000.000	

COORDINATES OF JOINES			
JOINT	X	Y	Z
1	0.000	0.000	0.000
2	360.000	0.000.	0.000
3	0.000	0.000	-240.000
4	360.000	0.000	-240,000
5	0.000	14.4.000	0.000
6	360.000	14.4 .000	0.000
7	0.000	146.000	-240.000
8	360.000	14.4 .000	-240.000

JOINT RESTRAINTS

JOINT	XTR	YRR	ZTR	XR		YR	ZR	1
1	1	1	1	1	1	1		
2	1	1	1	1	1	1		
3	1	1	1		1	1	1	
4	1	1	1		1	1	1	

LOAD DATA
NLJ NLM
$2 \quad 2$
ACTIONS APPLIED AT JOINTS

JOINT	X FORCE	Y FORCE	Z FORCE			
5	5.000	0.000	0.000	0.000	0.000	0.000
7	15.000	0.000	0.000	0.000	0.000	0.000

ACTIONS AT ENDS OF RESTRAINED MEMBERS DUE TO LOADS MEMBER

AML7 AML8 AML9 AML10 AML1I

JOINT DISPLACIEMENTS AND SUPPORT REACTIONS
$\begin{array}{cccccccc}J O I N T & \text { XTR } & \text { YTR } & \text { ZTR } & \text { XR } & \text { YR } & \text { ZR } & \\ 0.0000 & 0.000 & & 0.000 & 0.000 & 0.000\end{array}$
X FORCE \quad YFORCE Z FORCE
X MOM Y MOM Z MOM
$\begin{array}{llllll}12.476 & 29.011 & 0.247 & 20.264 & 6.813 & -461.688\end{array}$
JOINT XTR YTR ZTR XR YR ZR
$\begin{array}{lllllll}2 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000\end{array}$
X FORCE Y FORCE $\quad Z$ FORCE

- $-18.33 \pm$		30.985			-0.247	X MOM		Y MOM		Z MOM			
			-20.6			6.837	1013	. 326					
JOINT	XTR			YTR	ZTR	XR	YR	ZR					
3		. 000		0.000		0.000	0.000		0.000		0.000		

X FORCE Y FORCE Z FORGE
X MOM Y MOM Z MOM
$\begin{array}{llllll}0.907 & 13.166 & 0.247 & 20.264 & 6.813 & 274.607\end{array}$
JOINT XTR YTR ZTR XR YR ZR
$\begin{array}{lllllll}4 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000\end{array}$ X FORGE Y FORGE Z FRRGE

X MOM Y MOM Z MOM
$\begin{array}{llllll}-15.052 & 16.838 & -0.247 & -20.686 & 6.837 & 1037.421\end{array}$
JOINT XTR YTR ZTR XR YR ZR
$\begin{array}{lllllll}5 & 0.817 & -0.014 & -0.075 & -0.000 & -0.003 & -0.036\end{array}$
$\begin{array}{cccccc}\text { X FORCE } & \text { Y FORCE } & \text { Z FORCE } & \text { X MOM } & \text { Y MOM } & \text { Z MOM } \\ 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000\end{array}$

MEMBER END ACTIONS
MEMBER 1

AM $1=$	29.000
AM $2=$	-12.476
AM $3=$	0.247
AM $4=$	6.813
AM $5=$	-20.264
AM $6=$	-461.688
AM $7=$	-29.011
AM $=$	12.476
AM $9=$	-0.247
AM10 $=$	-6.813
AM 11 =	-15.352
AM12	-1334.814

MEMBER 2
$\mathrm{AM} \mathrm{I}=\quad 30.985$
AM 2 18.331
AM $3=\quad-0.247$
AM $4=\quad 6.837$
AM $5=\quad 20.686$
$\mathrm{AM} 6=1013.326$
AM $7=\quad-30.985$
$\mathrm{AM} 8=\quad-18.331$
$\mathrm{AM} 9=\quad 0.247$
AM10 $=\quad-6.837$
$\mathrm{AMII}=\quad 14.930$
$\mathrm{AM12}=\quad 1626,404$

MEMBER 3	
AM $1=$	13.166
AM $2=$	-0.907
AM $3=$	0.247
$\operatorname{AM} 4=$	6.813
AM $5=$	-20.264
$\operatorname{AM} 6=$	274.607
AM $7=$	-13.166
AM $8=$	0.907
$\mathrm{AM} 9=$	-0.247
$\mathrm{AM10}=$	-6.813
AM11 $=$	-15.352
AM12 $=$	-405.277
MEMBER 4	
$\mathrm{AM} 1=$	16.838
AM $2=$	15.052
AM $3=$	-0.247
AM $4 .=$	6.837
AM $5=$	20.686
AM $6=$	1037.421
$\mathrm{AM} 7=$	-16.838
AM $8=$	-15.052
AM $9=$	0.247
AM10 $=$	-6.837
AMII $=$	14.930
AM12 $=$	1130.027
MEMBER 5	
AM $1=$	17.903
AM $2=$	29.134
AM $3=$	0.247
AM $4=$	-0.662
$\operatorname{AM} 5=$	-44.489
$\mathrm{AM} 6=$	1346.809
AM $7=$	-17.903
AM $8=$	30.866
AM $9=$	-0.247
$\mathrm{AM10}=$	0.662
AM11 $=$	-4.4.551
AM12 $=$	-1658.709
MEMBER 6	
AM I $=$	0.000
AM 2	0.119
AM $3=$	-0.428
AM $4=$	-32.305

AM $5=$	51.388
AM $=$	14.268
AM $7=$	-0.000
AM $=$	-0.119
AM $9=$	0.428
AM10 $=$	32.305
AM11 $=$	51.388
AM12 $=$	14.268

MEMBER 7
$\mathrm{AM} 1=\quad 15.480$
AN $2=\quad 16.957$
AM $3=\quad 0.247$
AM $4=\quad 0 \quad 0.662$
AM $5=\quad-44.551$
AM $6=\quad 1097.722$
AM $7=\quad-15.480$
$\mathrm{AM} 8=\quad 13.043$
AM $9=\quad-0.247$
$\mathrm{AM10}=\quad 0.662$
AM11 $=\quad-4.4 .489$
AM12 $=\quad-393.282$
MEMBER 8

AM $1=$	-0.000
AM $2=$	0.122
AM $=$	-0.428
AM $4=$	11.994
AM $=$	51.302
AM $6=$	14.690
AM $7=$	0.000
AM $=$	-0.122
AM $9=$	0.428
AM10 $=$	-11.994
AM11 $=$	51.302
AM12 $=$	14.690

CHAPTER VI

SPECIAL PURPOSE COMPUTER PROGRAMS

The programs that have been presented are of a general nature, and they may be applied to structures in a broad category. The stiffness method programs will handle most framed structures. Occasionally, an engineer will find himself doing a certain set of calculations frequently enough to make the problem worth programmingo This may simply involve programming a set of "plug-in equations, or it may be extremely complicated. In any event, it may fall into the category of a special purpose problem, which can not be properly satisfied by a general purpose program, such as the stiffness method programs presented in the last chapter. Special purpose programs can be on an infinite number of small or special topics.

A few special purpose programs, which the author finds to be particularly handy, are demonstrated. They should lead the engineer to realize that many routine problems can be done more economically on a computer, if they re-occur often enough.

Computer Analysis and Design of Multi-Span Highway Bridges

Highway bridges have always been a somewhat repetitive operation, and engineers have specialized in bridge design alone. Most state highway departments have a bridge design section which does the same calculations over and over, for years on end. The analysis of simple span and continuous bridge structures is an algorithm, or chain of logical dem cisions, which can be programmed. In the period since about 1962, several state highway departments have written programs for the analysis and design of multi-span continuous bridges of variable cross section. The Georgia Highway Department wrote a program for the I.B.M. 1620, 60k, which has subsequently been adopted by the Oklahoma Highway Department. The Maine State Highway Commission published a series of bridge design programs in January, 1965, utilizing the method of moment distribution. ${ }^{1}$ In 1963 the Wisconsin State Highway Commission, Bridge Section, published a group of nine programs entitled Continuous Beam Analysis and Steel Beam Design ${ }^{2}$, which will be examined here.

In its original form, nine programs for bridge analysis and design were written by the engineers of the Wisconsin Highway Commission to compute the beam characteristics, dead load moments and shears, live load moments, shears, and reactions for a variable cross section continuous bridge of up to five spans, based on the 1961 AASHO specifications. The $1_{\text {W. Jo Verrill, R. Lo Mallar, and DoRo Fields, Continuous Beam Series, }}$ (I.BoMo Users Group Program No. 9.2.053)。
${ }^{2}$ James F. Gibbons and Stanley Wo Woods, Continuous Beam Analysis and Stee1 Beam Design, (I.B.M. Users Group Program No. 9.2.017).
cover plates are then designed for a basic web section using AASHO alternating stress specifications and AWS specifications.

The program was originally written in nine consecutive passes to be run on the I.BoM. $1620,20 k$, computer. All input was on paper tape, and only the paper tapes were released for publication, along with a discussior of the programs. The source program was not released, and paper tape feed 1620^{\prime} s soon became obsolete and unavailable. In short, the program was inoperable because the proper machine was not available to run the object tape, and the source program was not pubiished. often, authors are reluctant to release their programs for exploitation by others. The author of this report had extensive negotiations with the Wisconsin Highway Commission and finally succeeded in obtaining a "bugged listing" of the program from the authors. The program was filledwith errors incurred when the actual source listing was typed by a secretary before being released. In addition to these errors, the programs could not be run on a standard 1620 , 20k, because they overflowed the memorye They had been rewritten in machine language by the original authors to counteract this situation. The author of this report spent seven months debugging the nine programs and combining them in one very large program to be run on the $I \cdot B \cdot M \cdot 7040$. The nine programs were "chained together (a special feature of the 7040 compiler) to run in series, one at a time. The output of a program is written an magnetic tape for temporary storage, the next program is read in, and the data is read off of the magnetic tape. In this manner, each of the programs is called into memory by the computer at the proper times operated on, data is written on tape or stored in a COMMON statement, the program exits the memory, the next program in the series is called into
memory, data is read from cards, tape, or COMMON, etc, - until all nine programs have been run in succession. All of these problems are mentioned to make the reader aware of a few of the many problems encountered in trym ing to run someone else's program. This points to the advantage of writing your own programs. "Canned programs" raxely work without some alterations. The precise manipulations involved in many areas of this program are a mystery to all but the original author, for in many cases there are no comment statements to explain what is being done. These are a few of the disadvantages of this'program.

The strong advantages of this program make it worth all of the trouble. It takes the I.B.M. 7040 computer about one and one-half minutes to do all of the calculations for the analysis (and design of cover plates) of a five span continuous, parabolically haunched plate girder under AASHO H20-S16 truck loading. This makes it possible to try many alternatives for the design of a particular bridge, in search of the best design. The cost of running a proposed design on the computer is probably in the \$15-\$20 range. It would be impossible for an engineer to do the calculations this economicaliy in a commercial operation. The author of this report has run four bridges in a row with only seven minutes of execution time used on the 7040. The client can certainly save money and materials by having the engineer do the calculations on the computer. If nothing else, the computer offers an excellent check on manual calculations.

A consulting engineer who does not do bridge design exclusively can, in effect, store his knowledge of bridge design in a computer program for instant recall when a bridge job comes along, Likewise, an engineer who is not completely versed in the design of bridges can draw on the knowledge
of an expert bridge designer who has stored his knowledge in this program. Briefly, one does not have to be as polished as a professional bridge designer to do the calculations involved in the analysis of a large bridge, with the aid of this programo This program is not a substitute for sound engineering judgment, however.

The words of the original authors (James F. Gibbons and Stanley W. Woods, Continuous Beam Analysis and Steel Beam Design), best describe the basic operation of the program.

The beam characteristics are computed first, based on the cross section data given as input. There are two types of data that are possibie.

Type I is used when the moment of inertia variation is known. This is commonly used with wide flange sections, and could be used as a first step in plate girder design.

Type II is used when the exact description of the section is given, which is usually the case for plate girders and concrete beams, The input section consists of the web and plate sizes. The web may be straight or have straight or second degree parabolic haunches.

The concentrated angle change method of describing the elastic slope of a beam is used to obtain fixed end moments, carry over factors and relative stiffness (If the actual section is used, the absolute stiffness is found, except for the modulus of elasticity).

The span is broken into twenty segments for this method. If there are hinges in the span, the beam characheristics are modified using a method outlined by PCA.

There may be three variations of uniform dead load in each span. The dead load moments are found by the slope deflection method. Equations are set up for each span and placed in matrix form. The coefficient
3^{3} Beam Factors and Moment Coefficients for Members with Internediate Expansion Hinges, (PCA Bulletin ST 75), 1948.
matrix is inverted and the fixed-end moments are inserted to solve for the joint rotations, and subsequently the dead load end moments. Simple beam moments are superimposed on the end moments and the final dead load moments are computed at tenth points. The dead load shears are computed along with the dead load moments.

In the category of live load moments, an end moment influence line is computed for each span. This influence line is based on the variable moment of inertia entered as input, or a constant moment of inertia, depending on the designeris choice.

Using the end moment influence lines, an influence line for each 10 th point in the span is computed with ordinates on the influence line computed at the 20th points. Maximum positive, maximum negative, and total areas are computed for the influence lines to determine curb and sidewalk moments and maximum positive and negative live load lane moments.

Maximum positive and negative truck moments are then computed. For positive moment, a concentrated load is placed at the point being considered for positive moment and the remaining wheels placed to provide maximum moment. For negative moment, the concentrated load is placed at the maximum negative ordinate and the other wheels placed to provide maximum moment. AASHO specifies the wheel spacing to be 14 feet, with the trailer axle being allowed to vary between 14 and 30 feet. The truck is placed in all combinations of allowable positions to determine the maximum moments.

The maximum positive truck moment is compared to the maximum positive lane moment, and the maximum value is printed. This is repeated for the negative momentso The moments that are printed have been multiplied by impact and distribution factors.

Live load shears are found in a way similar to tive load moments, by computing a shear influence line in place of a moment influence line。

Reactions for curb and sidewalk loads are the sums of the shears at the supports.

Reactions are computed for both lane and truck loads in two ways. First, they are found for one lane and one truck, with no impact or distrim bution included. Then, they are found by multiplying the results by the distribution factor (LLR) and the average impact factor for the first and second spans. LIR is used only on the load at the support. The other loads and also the shears use the moment distribution factor.

A steel beam may be designed for one to three basic allowable stresses, compositely in the positive moment regions and nonmcompositely throughout.

Some assumptions are made so that the approximate thicknesses of cover plates are used. If the depth is less than 37 inches, a wide flange section is assumed, and the width of the cover plate is assumed to be 10 inches. If the depth is greater than 37 inches, a plate girder section is assumed and the width of cover plate is assumed to be 16 inches.

Cover plates are determined to be added to the basic web section. The basic web sections for plate girders is the actual web, and for wide flange beams it is the beam. Cover plate sizes are determined using the allowable stresses. In the non-composite zone, the sizes are based on the allowable basic, AASHO, and AWS stresses.

The allowable AASHO stresses are based on the ratio of minimum to maximum stresses and specified group loading condition. AWS allowable stresses are computed similarly and single lane loading is applied where applicable, using the ratio of dism tribution factors for the live load moments. For wide Elange beams, the formulas for fillet welds are used and for plate girders the formulas for A36 steel butt welds are used.

If the total positive moment is greater than the total negative moment, a composite design is made. The dead load is placed on the steel section and the sidewalk and live loads are placed on the composite section. Stresses in the top and bottom plates and the concrete are checked against the allowable stresses. Plate areas are adced where needed until the stresses in the section are within the allowable.

[^1]LINK 1
Read in numbers of spans, type of loading (H20-S16 etc.), whether or not live load is on constant or variable section I, simple beam distribution factor at support for determining reactions, sidewalk live load ($1 \mathrm{~b} . / \mathrm{ft}$), dead load of curb $1 \mathrm{~b} . / \mathrm{ft}$,), lengeh of spans, location of expanston hinges, uniform dead load (3 possible varkations/ span), live load distribution factor according to AAsHo, number of allowable stresses to be used in the design (3 max.), allowable stresses, allowable concrete stress, effective width of slab, slab thickness, distance from the top of the web to the bottom of the siab, minimum area of top cover plate for composite design, resisting force of one shear connector, modular ratio of steel to concrete, AASHO group numer for determining allowable stresses from alternating loads, dimensions and properties of wide flange or plate girder section at all points in each span (haunches included).

Compute the moment of inertia of a plate girder from the dimensions given. Compute the relative stifinesses, carry-over factors and fixed-end moments.

LINK 2.
Modify the beam chaxacteristics for the presence of expansion hinges.

IINK 3
This is a linkage program which was used in the 1620 version to cransfer the beam characteristics computed in LINK 2 to different addresses in order to make maximum use of the 20 k memony of the 1620. It was simpler to leave it in the 7040 version than to take it out. It also prints out the headings for the dead load moments and shears.

LTNK 4
This is the slopemeflection solution program. This program sets up simultaneous linear equations and solves them for dead load moments and shears, and for pier moment influence lines. The dead load moments are stored on tape (4), to be used in the steel design program.

Figure 32.
Flow Chart of Bridge Analysis and Design

Figure 33.
Continuation of Bridge Rlow Chere

This should give the reader a very general idea of what the program does. To explain the program in any great detail would take one hundred pages, perhaps. The only peonle who fully understand the interworkings of the program axe the original authors. Comment statements are very scarce in the source Zisting , and it is often difficult to determine what is being done at various stages. This program is presented to give the reader a taste of what is availabe in the field of bridge programing. For a fuller discussion of the program, one should refer to the I.B.M. Users Group literature published on it. (see footnote 2, p. 103).

This program is capable of handling wide flange, plate girder, and concrete continuous beams, of variable cross section. A two span concinuous parabolically haunched plate girder bridge has been run as a sampe problem。 Sense switch 3 is turned on to run a plate girder or concrete section, and off for a wide glange section. The input data for the sample problem is filustrated on the next page.

Figure 34 .

Two Span Continuous Plate Girder

H20-S16 Truck loading
The simple beam distribution factor at the support of the beam, for determining the reactions, is 1,833.

Live load on the sidewalk is 0.0 2b. $/ 5 t$.
Gurb weight is $0.01 b / f t$.
The AASHO live load distribution factor is 1,636
Dead load weight of slab beam harcware is 1080.0 lb ./ft.
No hinges are present.
Allowable steel stresses of 20.0 and 25.0 ksi . are tried.
Allowble concrete stress is 1.60 ksi .
Effective slab widch is $84.0^{\prime \prime}$.
Effective slab thickness is $7^{\prime \prime}$.
Shear connector strength is 23.8 kips.
Modular ratio of steel to concrete is 10.0 .
Minimum area of top cover plate is 12.0 sc . in.
AASHO group number for determining allowable stresses from alcernating loads is 2 .

TABLE XVII

INPUT DATA FOR BRIDGE

1

1620.000	2.000	4.000	0.000	1.833	0.000	0.000
1.000	1.000	1.000	-1.000			
110.000	1.646	1080.000				
1.000	82.000	43.000	43.000			
1.000	110.000	-43.000	78.000			
2.000	75.000	16.000	.750			
2.000	110.000	16.000	1.500			
3.000	110.000	16.000	1.500			
4.000	75.000	1.000	.375			
4.000	110.000	99999.999	.500			
99999.000	1.640	1080.000				
0.000	0.000	0.000	75.000	0.000	40.000	
0.000	0.000	35.000	0.000	40.000	0.000	
2.0	20.0	25.0	0.0	1.4	84.0	7.0
12.0	23.8	1.0 .0	2.0			0.0

TABEE XVEII
OUTPUT DATA for bridga
DL MOM (FT-MKIPS) AYD SHEAR(KIPS) AT X/20TH PTS X MOM. SHEAR
SPAN 1

0	0.0	39.9
2	374.1	28.1
4	617.5	16.2
6	730.3	4.3
8	712.4	-7.6
10	563.7	-19.5
12	284.5	-31.3
14	-125.6	-43.3
16	-669.5	-55.6
18	-1349.0	-67.9
20	-2164.0	-80.3

MAX. LIVE LOAD MONENTS AT X/20 PTS.-IN FT. KIPS
$X \quad \operatorname{CURB}+(\rightarrow) S D K . L L \quad \operatorname{CURB}+(-)$ SDR.LL $+\mathrm{LL} \quad+\mathrm{LL}$ SPAN 1

2.0	0.0	-0.0	592.5	-97.6
4.0	0.0	-0.0	984.1	-195.3
6.0	0.0	-0.0	1297.8	-292.9
8.0	0.0	-0.0	1268.9	-390.6
10.0	0.0	-0.0	1215.5	-488.2
12.0	0.0	-0.0	1056.8	-585.9
14.0	0.0	-0.0	803.4	-683.5
16.0	0.0	-0.0	486.6	-731.2
18.0	0.0	-0.0	130.0	-1182.9
20.0	0.0	-0.0	0.0	-1766.5

LIVE LOAD SHEARS AND REACTIDNS
LEFT SUPRORT REACTIONS
RIER-LATE BRG-IANE PIER-TRUCK BRG-TRUCK SREN I
$55.4 \quad 58.1$
Shears at x/20TH PTS
X SDK. + CURB MAX. LI
$0.0 \quad 0.0 \quad 63.3$
$2.0 \quad 0.0 \quad 53.9$
$4.0 \quad 0.0 \quad 44.7$
$6.0 \quad 0.0 \quad 36.1$
$8.0 \quad-0.0 \quad-29.4$
$10.0 \quad-0.0 \quad-37.9$
$72.0 \quad-0.0 \quad-45.6$
$14.0 \quad-0.0 \quad-52.6$
$16.0 \quad-0.0 \quad-58.6$
$18.0 \quad-0.0 \quad-64.0$
$20.0 \quad-0.0 \quad-72.2$

SPAN 2

$119.5 \quad 121.6 \quad 71.6 \quad 74.8$ CONTINUOUS STEEL BEAM DESIGN AT X/IOTH POINTS

FS	NON-COMPOSITE			COMROSITE			
	A-FS	A-AASHO	A-AWS	A-BTM		AWS	
					A-TOP	$A=B T M$	A-TOP
SPAN 1							
1							
20.0	10.9	8.9	8.1	8.8	12.0	8.8	12.0
25.0	8.1	8.9	8.0	6.4	12.0	6.4	12.0
2							
20.0	19.8	16.8	15.4	18.2	12.0	18.2	12.0
25.0	15.2	16.8	15.3	14.6	12.0	14.6	12.0
3							
20.0	24.4	21.3	19.5	23.0	12.0	23.0	12.0
25.0	18.9	21.2	19.4	29.4	12.0	19.4	12.0
4							
20.0	25.1	22.9	20.8	23.8	12.0	23.8	12.0
25.0	19.5	22.8	20.7	21.0	12.0	21. 0	12.0
5							
20.0	22.3	21.8	19.6	20.4	12.0	18.6	12.0
25.0	17.2	21.7	19.5	19.8	12.0	19.8	12.0
6							
20.0	16.1	18.3	16.1	13.6	12.0	13.8	12.0
25.0	12.3	18.2	16.0	16.2	12.0	16.2	12.0
7							
20.0	7.8	12.6	10.7				
25.0	5.5	12.6	10.7				
8							
20.0	15.9	14.7	13.4				
25.0	12.0	34.7	13.4				
9							
20.0	22.7	16.1	15.2				
25.0	17.2	16.1	15.2				
10							
20.0	24.0	15.6	14.8				
25.0	17.9	15.6	14.8				
SHEAR CONHECTOR SPACINGS (IN.)							
0.0	19.9						
1.0	23.4						
2.0	28.2						
3.0	$34_{6} 9$						
4.0	42.9						
5.0	33.3						
6.0	27.6						
7.0	24.0						
8.0	21.5						
9.0	19.7						
10.0	17.5						

Gable Frame Anolysis

A common Exame analysis problen is the gable Erame. This problem could be done with the stiffness method plane frame program, but not on a small 1620 computer. A volume of condensed solutions to common Erame problems is Erames and Arches, by Valerian Leontovich. It contains plug-in algebraic formulas for the solutions to porial frames, frapezoidal fremes, geble frames, arches, etc. These formulas are easily programmed on the 1620 to provide a guick and comprehensive solution to a routine problem. The Eormulas for the analysis of a pinned base gable frame, with haunched members optional, have been programmed. It gives a solution for all of the support reactions and bending moments due to uniform load on the roof, snow drift 1 load on the reef, and wind loed.

1
It is necessary to use this book in conjunction with the operation of the program to obtain the ralues of the data used as input for the solution of the formulas. Alt input data is explained in the coment statements of the source program. A sample gable trame with haunched members has been run, and it is presented on the next page.

1

Vaterian Leontovich, Frames and Arches, (McGraw-Hisy Book Company. 1959.) p. 295。

TABET XIX
INPUT DATA POR GABLE FRAME

. 49	. 45	. 47	. 47				
3.95	3.10	3.3	3.3	1.85	1.9	15.0	10.0
22.4	40.0	10.0	10.0	2.0	2.0	1.0	2.0

BOTH BAYS HAVE UNIFORM VERT $\triangle O A D=$
$\mathrm{HL}=\mathrm{H} 5 \quad \mathrm{M} 2=\mathrm{M} 4 \quad \mathrm{M} 3$ $\begin{array}{cl}12.654 & -189.820 \\ \mathrm{X} 2 & \mathrm{MX} 2\end{array}$ $2.000-126.474$
$.4 .000 \quad-71.129$
$6.000-23.784$
$8.000 \quad 15.561$
$10.000 \quad 46.906$
$12.000 \quad 70.251$
$14.000 \quad 85.597$
$16.000 \quad 92.942$
$18.000 \quad 92.287$
$30.000 \quad 83.632$
UNIFORM WIND LOAD $=$ H1
-5.390
Y2
$1.000 \quad 75.750$
$2.000 \quad 69.641$
$3.000 \quad 62.532$
4.00054 .422
$5.000 \quad 45.313$
$6.000 \quad 35.204$
$7.000 \quad 24.094$
$8.000 \quad 11.985$
$9.000-1.123$
$10.000-15.233$
1.000KIPS/FT ON ROOF ONLY

M2 M3 M4 Vl V5
$80.860 \quad-15.233 \quad-69.139 \quad-4.999 \quad 4.999$

UNTEORM WIND	LOAD $=$	2.000	KIPS/ET ON	colums		
HI	45	M2.	M3	M4.	VI	V5
-12.027	2.972	67.918	-18.051	-64.581	-2.812	2.812
צ2	NY2					
1.500	16.916					
3.000	31.583					
4.500	46.000					
6.000	54.167					
7.500	62.084					
9.000	67.751					
10.500	71. 1.68		日			
12.000	72.335					
13.500	72.252					
15.000	67.918					

ANAIYSIS OF PRESTRESSED CONCRETE SECTIONS

The process of designing a prestressed concrete cross section for any applied system of loads is a highly repeticive procedure of erial and error. The initial exial section may be based on an educated guess derived from formulas such as the following formulas presented in Chapter 6 of Design of Prestressed Concrete Structures, by T. Y. Lin.

$$
\begin{aligned}
& F=M_{T} / .65 \mathrm{~h} \quad \mathrm{~h}=\mathrm{k} \sqrt{M} \quad A_{c}=\mathrm{F} / .50 \mathrm{I}_{\mathrm{c}} \\
& \text { where } h=\text { depth of beam in inches } \\
& M=\text { maximum bending moment in ft-kips } \\
& k=a \operatorname{coefxicient} \text { varying from } 2.5 \text { to } 2.0 \\
& F=\text { finel prestress force } \\
& M_{T}=\text { tocal moment acting on the section } \\
& \text { (D.L. }+ \text { L.L.L. }^{\text {. }} \\
& A_{c}=\text { required area of section } \\
& f_{c}=\text { maximum allowable compression stress } \\
& \text { at working load. }
\end{aligned}
$$

From these crude values a trial section is assumed and the analysis is made. This trial and error process suggests itself well for computer application. If, from the properties or dimensions of a general section, a computer analysis can be performed, much of the repetitious work of a design problem can be accelerated. Just as many trial sections may be required as by manual methods, but they may be done in a matcer of a few minutes, rather than a much longer time by long hand. As an exampe, seven trial sections were checked for a given beam in one-half hour with 1 T. Y. Lin, Design of Exestressed Concrete Sbructures, (John Wyine \& Sons, 1955).
the aid of the computer. This included card punching time between each new revised trial section.

In searching for a ready made computer program for the analysis of prestressed concrete sections, one encounters the usual difficulty in trying to get something for mothing. Many authors in the field of structural engineering love to give flowery but vague descriptions of how to apply the computer to the analysts of various types of structures. Very few authors give print-outs of cheir actual source programs. Until the recent publication of sone texts dealing with structural programing, one's only recourse was the I.B.M. Users Group Library of Structural prograns, or starting from scratch.

Several articles on the subject of programming of prestressed concrete have appeared in the Journal of the Prestressed Concrete Institute. ${ }^{1,2}$ As ususl, these were nothing but a big pep talk about computer programing of prestressed concrete, No programs were given. The first article referred to did state that the basis of the material contained in the program (which was not presented) being discussed, was contained in Design of Prestressed Concrete Structures, by T. Y. Lim. (See Foot note $1, P$. 132).
?emotring back to this original source (T. Y. Lin), a program has \therefore an mutan by and it is presented in this report. It was written from scratch, largely based on the material contained in chapter 2
Peter C. Patton and Haxold R. Hutcbens, Destgning Prestressed Concrete Slabs With e Digital Computer, (P.C.I. Joumel, June, 1962)。 3
A. D. St. John, Computer Design of Prestressed Concrete, (P.G.I. Journal, August, 1963).

5 of Lin's text. It is written for the I.B.M. 1620 computer, but it may easily be modified to sun on other computers using basic Fortran. The author assumes that the reader has a fundamental knowledge of basic Fortran.

In writing this program, it was desired co incorporate as wide a range of prestressed sections as possible Relying on the basic "I" shaped section as being the most general, it is possible to vary the depth of the beam and the size of the top and bottom flanges (including fillets) In fact, the dimensions of the bottom flange may be reduced to zero to form a "T" shaped section. As an added option, the dimensions of a composite section may be read in (including the slab), and the analysis may be done on a composite section. The composite option is manipulated by sense switch 3, as will be shown later.

The question of allowing ox not allowing tension in the section is taken into consideration. From the values of the strength of the concrete at the time of initial prestress and at $28-\mathrm{day}$ strength (as read into the computer), the A.C.I. allowable stresses are computed for compression and tension. If tension is not desired, or if a different value of tension than the A.C.I. allowable is desired, by turning on sense switch 4 , seperate values of tension may be read in. If no tension is desired, simply read in the new value of tension as 0.0 .

The options of analyzing any basic "t" shaped section for composite or non-composite action, with or whthout the consideration of tension, make the program very versatile. In reference to the variations in the shape of the sections that are possibie for this computer analysis, a

Figure 36.
Possibie Vartations in Shape of Section

The basic dimensions of the beam (in inckes) to be read into the computer are shown in Figure 37, and they are further explained in the initial comment statements at the start of the source program.

In addition, the values of dead load girdex moment, live load gircer moment, and composite slab dead load moment (optional) are read in as XMS, XM, and XMS respectively. All bending moments are in inchkips. Composite slab dead loed moment wis and composite slab dimensions (BSIAB and TSLAB) are read in as an option if sense switch 3 is on The Initial prestress force $F O$, the percent loss of prestress PL , the tnitial compression strength of the concrete at the time of prestress, FCi, and the 28 -day strength FC 2 , are read into the compter. Finally, the
allowable tension in concrete at time of prestress, FC5, and the allow able tension under working load, $F C 6$, which differ from the A.C.I. allowable tension, may be read in as an option by turning on sense switch 4 . All of the input data is thoroughly defined in the coment statements at the start of the source program.

The first portion of this program is devoted to finding the properties of the section such as the area, location of the neutral axis, locetion of the kern points, moment of inertia, and required eccentricity. The A.C.I. allowable stresses in tension and compression are computed from f and f read in. Then the required areas of the section are computed for the tension and compression stresses to be within the allowable If this required area is less than the actual area, then the section is satisfactory, but a smaller section may be found by the trial and error process. The method of finding these required areas is taken from articies 6-6 and 6-7 of pesign of prestressed Concrete Seructures, by T. Y. Lino (See footnotel , p.132).

Tigure 41.

SAMPLE RROBLEM INRUT DATA

60.0	12.0	10.0	12.0	12.0	6.0	3.0	3.1
3.0	3.0	4930.00	13370.00	555.0	.20	4.0	6.1

```
prECAST SECTION PRORERTESS - TENSION ALLONED
OUTPUT DIMENSIONS ARE IN INCHES, TN**2, IN***4, AND KIPS
AREA = 510.000 I= .18490847E+06 CB= .29588235E+02
    CT}=.03411765E+0
KT= 12.863 KB= 12.515 E = 23.579
E IS SMALERR THAN CB - O.K.
FO = 555.000 FO1 = 540.257
AC(BOT)=481.125 AC(TOR)=394.383
```


Figure 42

The output data reveals that the area of the section is 510.0 sq. inches. The moment of inertia is 194,103.47 inches. The c.goc. 29.58 inches up from the bottom fiber and $30.4 \overline{1}$ inches down from the fiber. The top kern point is 12,863 inches up from the c.goc. and 12. 515 inches down from the c.g.c. is the bottom kern point. The ece tricity is 23.579 inches which is smaller than the distance from c.go to the bottom fiber so that the cable is in the beam. Initial trial 1 stress force was 555.0 kips and the revised value is 540.257 kips. Tl required beam area for stress at the botcom fiber to be within the A. allowable was 481. 125 sq. inches, and for allowable stress at the top fiber a 394.383 sq. inch section is recuired. Both required areas we less than that provided by the trial section. This trial section foul be adequate to sustain the applied bending moments. ocher problems such as shear would have to be checked before final approval of the se tion, of course.

45.0	16.0	7.0	22.0	7.0	7.0	4.5	4.5
7.5	7.5	491.5 .0	8869.575	660.0	.20	4.0	5.0
4467.5	66.0	7.0					
0.0	0.0						

$\therefore 2$
$5 \times$
$\therefore:$
－～ごる
$2 x$
ジーシ
$\therefore 2$

$\therefore 8$
200

OUTPUT DATA

precast section propertues－tenston amiowed
OUTEUT DEMENSTONS ARE IN TRCUES，IN＊＊2，IN＊$\%$ ，AND KIPS
$A R E A=559.500 \quad I=.12539030 E+06 \quad \mathrm{CB}-.20273458 E+02$ $C T=024726542 \mathrm{E}+02$
$\mathrm{KT}=11.054 \quad \mathrm{~KB}=\quad 9.063 \quad \mathrm{E}=16.510$ E IS SMALLER THAN CB－O．K。 COMPOSITE SECTEON REOUTREMENTS
FO＝ $660.000 \quad$ FOI $=675.377$
$A C(B O T)=516.451 \quad A C(T O P)=393.228$

The output shows that the required area is 516.451 sq . inches, which is less than the 559,500 sq. inches provided. Thus, the section is satistactory.

Figure 43.
AASHO-PCI TYPE ITI BEAM - NO TENSION ALLOWED \measuredangle°

[^2]
Solution of Systems of Simultaneous Equations

If the simultaneous equations for a slope-denlection solution of a problem are set up manally, this will necessitate the solution of the system of equations. When simultaneous equations grow beyond four unknowns, the axithmetic becomes cumbersome, and a computer solution is advantageous. There are numerous ways to solve systems of simultan ous equations, and many programs are available for this purpose.

One of the most common methods of solution is the Gaussuardan elimination method. The method basically involves eliminating all of the elements in the coefficient matrix of the equations, except for the mein diagonal elements whose coefficient value is reduced to one Thit is done by performing various arithmatic operations on the rows of the matrix. A typical set of simultaneous equations is show below, with their corresponding augmented coefficient matrix.

$$
\begin{array}{r}
x_{1}+x_{2}+x_{3}=9 \\
2 x_{1}+3 x_{2}-x_{3}=6 \\
2 x_{1}+x_{2}-x_{3}=0
\end{array}
$$

$$
\left[\begin{array}{rrr:r}
1 & 1 & 1 & 9 \\
2 & 3 & -1 & 6 \\
2 & 1 & -1 & 0
\end{array}\right]
$$

The aumented matrix is operaced on to make the left partition of the matrix into a unit matrix, with all elements equal to zexo except the main diagonal which becomes all one's. The final values of the right side of the partitioned matrix become the vaiues of the unknown:

A complete explanation of the manipulations involved in solving set of simuleaneous equations by the Gauss-Jordan method may be found most books on matrix algebra. The augmented matrix shown on the prev page is solved manually below. The symbol "R" stands for xow (of the matrix)。

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & 1 & 1 & 9 \\
2 & 3 & -1 & 6 \\
2 & 1 & -1 & 0
\end{array}\right] \xrightarrow[R_{2}-2 R_{1}]{R_{3}-2 R_{1}}\left[\begin{array}{cccr}
1 & 1 & 1 & 9 \\
0 & 1 & -3 & -12 \\
0 & -1 & -3 & -18
\end{array}\right]} \\
& {\left[\begin{array}{rrrr}
1 & 1 & 1 & 9 \\
0 & 1 & -3 & -12 \\
0 & -1 & -1 & -18
\end{array}\right] \xrightarrow[R_{I}-R_{2}]{R_{3}+R_{2}}\left[\begin{array}{cccc}
1 & 0 & 4 & 21 \\
0 & 1 & -3 & -12 \\
0 & 0 & -6 & -30
\end{array}\right]} \\
& {\left[\begin{array}{llll}
1 & 0 & 4 & 21 \\
0 & 1 & -3 & -12 \\
0 & 0 & -6 & -30
\end{array}\right] \begin{array}{l}
R_{1}+2 R_{3} / 3 \\
R_{2}-R_{3} / 2 \\
-R_{3} / 6
\end{array}\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & 5
\end{array}\right]} \\
& x_{1}=1 \\
& x_{2}=3 \\
& x_{3}=5
\end{aligned}
$$

The Gauss-Jordan elmination method has been progrommed, and some slight modifications have been aded to fascilitate accuracy. ${ }^{[}$A general matrix array $A(K, J)$ is read inco the computer for the elements of the augnented coefficient matrix. For N equations, the size of the array is $A(N, N+1)$ 。

In performing the elimination process, the diagonal element in the row " k ", $A(k, k)$, plays a particularly important role, and it is often called the pivot element. Since one of the steps is to divide row "k" by the element $A(k, k)$, it is mandatory that the pivot element not be zero. If a zero pivot element occurs at any step, an attempt may be mace to exchange the row containing the zero with a row below it in which the element in that columa is not zero. Likewise, if a pivot element is not zero, but is small, it may concain a large relative error. This sicuation may be remedied, to a certain extent, by searching at each step for the eiement of greatest magnitude in the pivot colum (in the pivot ron and those below) and exchanging rows so as to use it as the pivot element. After the array $A(N, N+1)$ has been read in, a routine is used to exchange the rows (or equations) of the matrix so as to maximize the pivot elements $A 9 k, k$) and to make sure that none of the pivot elements are equal to zero. After this shuffling of rows has been completed, then the Gaus-Jordan elimination is begun. A klow chatt fot the eliminacion procedure is presented on the next page.

1 Raymond W. Southworth and Samel I, Deleeur, Diticat Computation and Mumerical Mernods, (McCraw-H21 Book Company, 2965).

The Gauss-Jordan elmination method has been progrommed, and some slight modifications have been aded to fascilitate accuracy. ${ }^{[}$A general matrix array $A(K, J)$ is read inco the computer for the elements of the augnented coefficient matrix. For N equations, the size of the array is $A(N, N+1)$ 。

In performing the elimination process, the diagonal element in the row " k ", $A(k, k)$, plays a particularly important role, and it is often called the pivot element. Since one of the steps is to divide row "k" by the element $A(k, k)$, it is mandatory that the pivot element not be zero. If a zero pivot element occurs at any step, an attempt may be mace to exchange the row containing the zero with a row below it in which the element in that columa is not zero. Likewise, if a pivot element is not zero, but is small, it may concain a large relative error. This sicuation may be remedied, to a certain extent, by searching at each step for the eiement of greatest magnitude in the pivot colum (in the pivot ron and those below) and exchanging rows so as to use it as the pivot element. After the array $A(N, N+1)$ has been read in, a routine is used to exchange the rows (or equations) of the matrix so as to maximize the pivot elements $A 9 k, k$) and to make sure that none of the pivot elements are equal to zero. After this shuffling of rows has been completed, then the Gaus-Jordan elimination is begun. A klow chatt fot the eliminacion procedure is presented on the next page.

1 Raymond W. Southworth and Samel I, Deleeur, Diticat Computation and Mumerical Mernods, (McCraw-H21 Book Company, 2965).

TABLE XX

OUTPUT DATA ROR SEVEN STMUL TANEOUS EQUATIONS

ACTUAL EQUATRONS

$$
\begin{aligned}
& x_{1}+3 x_{2}+x_{3}+x_{5}+2 x_{6}+4 x_{7}=2 \\
&+2 x_{2}+2 x_{4}+2 x_{6}=3 \\
& 3 x_{3}+x_{4}+x_{5}+x_{7}=5 \\
& 2 x_{2}+2 x_{4}+4 x_{6}+3 x_{7}=1 \\
& 2 x_{1}+6 x_{2}+2 x_{3}+6 x_{5}+5 x_{6}+9 x_{7}=3 \\
& x_{1}+5 x_{2}+x_{3}+x_{4}+x_{5}+5 x_{6}+6 x_{7}=7 \\
& x_{1}+4 x_{3}+x_{4}+2 x_{5}+2 x_{6}+8 x_{7}=8
\end{aligned}
$$

MODIEIED GAUSS-JORDAN ELIMINATION EOR SIMULTANEOUS EQS.

$X 1=$	8.833
$X 2=$	-7.000
$X 3=$	9.250
$X 4=$	-14.333
$X 5=$	-2.083
$X 6=$	15.666
$X 7=$	-6.333

Tigure 45.

DISCUSSION AND CONCLUSIONS

The practical application of computers in structural work is no longer only a matter for the researcher to investigate. It is a reali in the cop design offices today. A recent survey of the actual amount of structural work being done by computer in comercial concerns shows this to be the case. Each year, Engineering-News Record magazine doe a survey to determine who the top 500 consulting engineering firms in the nation are. Included in the questionnaires sent to over 7,000 consulting firms by Rngineering-News Record wexe questions pertaining to the extent of computer use done by each consultant. The results of the questions concerning computer usage have been summarized. ${ }^{\text {d }}$
"Three out of five of the stratght design firms on ENR's list of the Top Design Ficms use electronic computers.

Among these(29) firms who have annual billings of $\$ 5$ million or more, computer users outnumber nonusers by a $5: 1$ ratio. In the next lower billing bracket, \$2.5 million to $\$ 5$ million, (43 firms) ratio of computer users zoons to 13:1. But the ratio slips beck as billings volume declines below that point. In the $\$ 1$ million to $\$ 2.5$ million billings bracket (146 firms), compueer users outnumber nonusers 3:2.

Not until billings volume drops below $\$ 1$ militon does the computer fail to win a distinct majority of the Top Design pirms. But, even at that, 48% of the (238) Eirms in that bracket use computers." I EIwyn Ho King, Electronic Compueation: past, present, potentia, (VoI. 92, NO. ST6. Dec., 1966), Jommal of the Structural Division, Proceedings of the American Society of Cuil Engincers.

Below the bracket of the top 500 consulting tirms, many of the smallex firms have special compuce consultancs available to them. Many small firms are renting small amounts of time on the computers of larger firms. "Time sharing" is becoming popuiar, Here, small users may hook into large computers thousands of miles away, on the telephone. An example of this is the many users in South America who regularly buy time over the telephone on the I.BoM. 7094 computer at M.I.T. in Cambridge, Massachusetts. Many firms have found that they do not have to own a compuer to use one. In contract, the consulting firm of Gauger Engineering, Tulsa, Oklahoma, is a "one man firm" which has its own I.B.M. 1130 computer. Fred Gauger is able to eurn out large scructurel designs in a minimum amot of time with his computer. A solid example of his work is a new $32-s t o r y$ building which he designed on his computer.

In short, computers are being used extensively in design firms coday. The new I.B.M. 1130 computer can be leased for about $\$ 1,000.00$ per month (or more, if you want extra fatures such as a high speed printer), and this "third generation" computer has begun to appear in design offices everywhere. The 1130 is faster, larger, and cheaper to operate than the "second generation" 1620, which is now obsolete. Of the major consulting firns which the author of this report has talked with, most have an 1130, or have one on order. The Engineering-News Record survey disclosed that 49 out of the 50 state highway departments in the United States use an electronic computer in their work. Therse axe some stubborn opponents left, but their number is dwinding, pertaps like their profics.

How meny and what types of progrems are being used by practicing engineers? This question was asked by the Engineering-News Record survey. It was found that the average progran library of a firm concained about 28 programs.
"In response to the request to list the five most used and/or valuable structural programs, 80 replied and made 286 citations of more than 90 programs that have identical or similar names on were obviously similarlymurposed programs. Abstracts wene reguested, but too few were submitced to permit enalysis."

It was found that the great majority of programs wexe of the "workhorse" type (Iike the "spectal purpose' programs presented in Chapter VI of this report), and few were as complex as the space frame program presented earlier. Mostly routine calculations were programed, and only a few programs could be considered complex or capable of performing any task which an engineer would hesicate to do menually. The practicAng engineer takes a very practical approach to programing, and programs those things which will directly save him time and make him money. The more exotic problems are left to the researchers.

A table is given on the next page which gives a breakdown of the 286 programs which engineers said that they used most commony. ${ }^{2}$

2
E. H. King, Electronic Computation: pest. Present, potential, Journal of the Seructural Division, (Proc. of the A.S.C. Do, Dec., 2966), p. II, Table 4 。
20
$\therefore 2$
\cdots
च:
$\therefore \because$
20
$\cdots:$
\therefore

Bridge Pier Analysis (including Rigid Frame)
Frame Analysis (Steel, Conerete)
Multistory Rigid Exame Analystis Tateral (including $E Q$ and Vert. Loading on High Rise Buildings
Space Erame Anelysis
(2) Substructure Anelysis

Continuous Truss Analysis
(3) Stxuctural Geometry

Turss (Analysis and Design (Determinate or Indeteminate)
STRESS
Transmission Tower Anelysis
Bridge Deck and Bearing Elev.
Gurved Bridge Geometry
Curved Beam Analysis
(2) Framing plan

Composite Beam Design
Composice Welded Girder Design
Concrete Beam Analysis
Influence Lines
Rrestressed Concrete Beam Design
(3) Continuous Beam Monent

Analysis of Beans Subject to Tor-
(6) Envelope (AASHO)

Continuous Beam Analysis, sion Beam and Girder Designs
(2) Design, Detail

Floor Framing Design and Analysis
(6) Desjon or Analysis of

Flat Slab Design
(2) Circular R/C Colums

Analysis of Slabs and Shella
Rectangular R / C Col.Deso
Steel Detailing
(2) Ulitimate ox Elastic Column Analysis and Desigu
Spiral Statrs
Chimney Design or Analysis
Closed Ring Anelysis
Arch Dam Anelyses, Deflection and Stresses

Beam Moments, Shears and Deflection
Elastic Arch Analysis
(2) Properties of Sections

Analysis of Sewer Arches and Rings by Voussoirs
(2)

Piping Elexibintay and Stresses
Various Services Bureau Proprietary Routines
Eoundation Designs-Rectangular Trapezoidal, Combined Ftgs; MaEs
${ }^{3}$ Numbers in parentheses indicace number of citations when greater tha one.

Up to tha present, most programing has been in the field of anal: sis, with less emphesis on the concept of design of structures. The Third Conference on Rlectronic Computation was held by the Comattee on Electronic Computation of the Structucel Division of ASCE in Boulder, Colorado, June 19-21, 1963. As in the Eirst two conferences (dating back to 1958), theory and analysis were the main topics of dis. cussion. In the third conference, methods of analyzing very complex structures were discussed, Most programs available to date are analysi programs, and most of the prograns in this report dealth with analysis.

The Fourth Conference on Electronic Computation (Univeraity of California, at Los Angeles, September 7-9, 1966) emphasized the design aspects of electronic computation. Design is the area for new development in programing, The only examile of true design in this xeport i the cover plate destign feature in JTNR 9 of the highway bricge programo Here, incremencs are added to the cover pate area until the scresses are within the allowable for the monents present. The prestressed concrece program has been used successfully by the author in rapidly check Ing and redesigning prestressed concrete sections. As mentioned previously, seven crial and exror runs were made in one-half hour to revisi the design of a prestressed concrete cross-section, Here, the actual redesigning of the section was done by the author and the computer checked it.

An excellent comercial design program is PRAN. On spectal cock Ing sheets, an engineer describes the geometry of a butiding fwere the menbers are placed) and reconds the loading conditions present on the structure. This data may be sent by air mati to New York where the data
is read into a 7094 comprer．A trial structure is set up and analyz From the moments and shears determined from the trial analysis，some new member sizes are chosen（All members in the A．I．S．G．Manaz are scored in the computer memory）．By trial and exror，the computer determines the final sections，and the results are sent back by retur mail，for a fee Service bureaus such as RRAND have been successful taking some business which an acchitect woula heve given to a structu engineer．As mone consulting firms go into computer work，the servic bureaus will probably fade away．

Two other growing axeas of development are automated preparation specifications and graphic display．Specifications writing is a high repetitive operation，and many sets of specifications are quite simil A large quancity of standard specifications may be read into the comp memory，and these to be used may be called out of memory and typed ou by the high speed printer．Consulting engineers are currently using these computer writcen specifications in the final contract．Graphic display is done by taking output of a computer program and feeding it into a plotting machine which plots the answers．The author recent watched the loads applied to a tower foundation be read into an I．B．y 360 compucer．From the applied loads，a foundation was designed by the computer．The answers were writen on magnetic tape，and the tap was read into a plocting machine．In about four minutes，the entire plans for the foundeion were draw up on 24×36 drefting sheets，ir cluding the citles．Similarly，the framing plans and elevations for multi－story building were draw on standard size dratcing sheets in about five minutes．The compucex selected the nember sizes from the

2.	A.I.S.C. Manual, and they zppeared on the Einal drawings. The qualtty
a	of the drewings was excellent. To prove the accuracy of the drawings,
\because	the magnetic tape was recycled through the automatic plotter, and the
3	same picture was redrawn over the original drawing with no detectable
3	difference tin the drawing, It followed the original lines precisely.
\cdots	Auto-plotcers are used by many highway departments to draw highway cros
\cdots	sections. The geometric coordinates of the highway cross-sections
36	(which may be designed by computer) are read into the auto-ploter at
8	the end of a work day, and the plotter does cross-sections through the
	night, shutting fiseff off when it tuns out of data, The automploter
2	never will take the place of a draftsman on special projects, but it me
\because	be applied to repetitive jobs.
	The computer will not work miracles, but it will do much of the
\cdots	"hack work" for an engineer. It will permit the engineer to do a more
	thorough investigetion of problems wich were previonsiy left to engine
3	ing judgment, for lack of precise infomationg An engineer can get a
$\%$	better conception of what is happening in a muti-story building under
	Wind load when he checks it with a space frame program than by manually
	analyzing with the cantilever method. The computer permits rapid inves
$\ddot{2}$	tigation in depth, in the interest of safety and economy. An engineer
\because	may use his tine much more efficiently with the aid of a computer.
\because \because	"Gagineering practice by nature is a compromise between crearivity and practicaltty, because the professional engineer has just so much time and money avatilable to do his job.
0	Using the computer as a toot, the encineor con more Eully reatize his design and prokesstonal output. He can eramine more design poesibitities

before producing a final design and thereby strengthen the integrity of his finished work.
The computer takes only a fraction of bis time, and yet enables him to consicer the many avenues available and refine his approach to design,:4

The electronic computer can only do what it is told. It operates in a predetermined logical sequence, but it canot think creatively. The creative thinking is left to the engineer, and for this reason, th computer will never replace the engineer. The engineer will always be required to solve all of the detalls which are not in the program.

A great deal of progress has been made in the past ten years in t field of structural programing, The computer hes become a practical cool for the structural engineer. He must grasp the tool and use it th his advantage.

4
"Computer Refines Sewer Designs", Engineering-News Record, Marh 23, 1967.
(1) Southworth, R_{0} w. and Deleeuw, S. L., Digital Computations and Numerical Methods, Mo-Grawnini, 1965.
(2) Gere, $J_{0} M_{0}$, Moment Distribution, D. Van Nostrand Co., Inco, 196
(3) Wang, $P_{0} G_{0}$, Numerical and Metrix Methods in Structural Mechanic with Applicetions to Computexs, John Wiey \& Sons, Inc., 19
(4) Drave Comp. Engineering Dept., General Vixtual Work Analysis of Structures, IoB.M. Users Group Program Library, Catalog NO. 9.200.
(5) Richmond, K。Mo, Structural Frame Analysis Progam, IoBoMo Compa Litd., 1445 West Georgia Stog Vancouver 5, British Copubia.
(6) Gere, J. M. and Weaver, Wo, Iro, Analysis of Eramed Structures, D. Van Nostrand Company, Inco, 1965.
(7) Weaver, Wo, Jr., and Nelson, Mo, Three Dimenstonal Analysis of 2 Buildings, Vol. 92 No. STb, Joumal of the Structural Divis Proceedings of the American Society of Civil Engineers, Dec. 1966.
(8) Verriti, Wo Jo and Mallar, R. Lo, Continuous Beam Series, T.BoMo Users Group, Gatelog No. 9.2.053, Jano, 1965.
(9) Gibbons, J.T. and Woods, S. Wo, Gontinuous Bem Analysis and Ste Beam Design. I.BoN. Users Group, Gatalog No. 9.2.017.
(10) Leontovich, V_{0} Lo, Erames and Arches, McGraw-Hill Book Company, 1959.
(11) Patcon, P. C. and Hutchens. H. Ro, Designing Prestressed Concret Slobs with a Digitel Computer, Joumal of the prestressed Concrete Institute, June, 1962.
(12) St. John, A. D., Computer Desion of prestressed Concrese, Jowna of the Prestressed Concrete Institure, Aug. 1963.
(13) Lin, T. Yo, Design of Erestressed Concrete Structures, John wion s Sons, Second Edition, 1963.
(14) Preston, B. K_{0}, Rracticat Prestressed Concrete, Vccrar-hui Book Co., 1960.
(15) King, F. Ho, Electronic Cotputetion: Past, Present, Potenctal, Vo1. 92, No. STS, Deco, 1066, Joumal of the Stuctural Divistion, proceedings of the Anerican Society of Givil Engineers.
(16) "Computer Refines Sewer Designs", Engineexing-News Record, Marc 23, 1.967.

$$
\because
$$

$$
\therefore
$$

$$
Z
$$

Beverly C. D. Edwards, It.Candidate for the Degree ofMaster of Science
Report: STATIC ANALYSIS OT ERAMED STRUCTURES
Major Field: Civil Engineering
Biographical:
Personal Data: Born in OkIahoma City, OkIahoma, on Octoder4,1943 , the son of Wr. and Mrs. Beverly c. D. ECwards.
Education: Graduated from Gasady High School, OkIohoma City,OkIahoma, in May, 1961. Recetved che degree of Bachelorof Science in Civit Engineering from the Oklahoma StateUniversticy, May, 1966. Member of Chi Epstion, an Assomciate Member of the A, S, C. B. and a Junior Member ofO.S.E.E.Professional Expexience: Compter programer with Benham-Blairand Afrilaces, Consulting Engineers, Onlahoma City,Oklahoma, summer of 1965 and Junior structural Engineerin the summer of 1966 .

[^0]: ${ }^{3}$
 Renneth Marvin Richmond, Structural Frame Analysis Program, (IBM Company Ltd., 1445 West Georgia Street, Vancouver 5, BoC.)

[^1]: A comparison of basic and AASHO alternating allowable stresses is mede, and the smaller is used for designing the section plate sizes also are determined by the AWS specifications to help determine appropriace cutmoff points.

 A minimum area for the top plate is part of the input, because a plate girder with composite action may not require a top cover plate, but a plate would be necessary for lateral stability and to hold shear connectors.

 Shear connector spacings are computed at the 10 th points along the span, using the maximum value of composite moment of inertia in the span. ${ }^{3}$

 A general flow chart will show the basic sequence of operations in the program.

[^2]: ${ }^{4}$ H. Kenc Preston, pRACTICAL PRESTRESSED CONCRETE, (McGraw-Hill, Publisher), Chapter 9.

